How our plants have turned into thieves to survive

February 18, 2019, University of Sheffield
Credit: CC0 Public Domain

Scientists have discovered that grasses are able to short cut evolution by taking genes from their neighbours. The findings suggest wild grasses are naturally genetically modifying themselves to gain a competitive advantage.

Understanding how this is happening may also help scientists reduce the risk of genes escaping from GM crops and creating so called "super-weeds—which can happen when genes from GM crops transfer into local wild plants, making them herbicide resistant.

Since Darwin, much of the theory of evolution has been based on common descent, where natural selection acts on the genes passed from parent to offspring. However, researchers from the Department of Animal and Plant Sciences at the University of Sheffield have found that grasses are breaking these rules. Lateral gene transfer allows organisms to bypass evolution and skip to the front of the queue by using genes that they acquire from distantly related species.

"Grasses are simply stealing genes and taking an evolutionary shortcut," said Dr. Luke Dunning.

"They are acting as a sponge, absorbing useful genetic information from their neighbours to out compete their relatives and survive in hostile habitats without putting in the millions of years it usually takes to evolve these adaptations."

Scientists looked at grasses—some of the most economically and ecologically important plants on Earth including many of the most cultivated crops worldwide such as: wheat, maize, rice, barley, sorghum and sugar cane.

The paper, published in the journal Proceedings of the National Academy of Sciences, explains how scientists sequenced and assembled the genome of the grass Alloteropsis semialata.

Studying the genome of the grass Alloteropsis semialata - which is found across Africa, Asia and Australia—researchers were able to compare it with approximately 150 other grasses (including rice, maize, millets, barley, bamboo etc.). They identified genes in Alloteropsis semialata that were laterally acquired by comparing the similarity of the DNA sequences that make up the genes.

"We also collected samples of Alloteropsis semialata from tropical and subtropical places in Asia, Africa and Australia so that we could track down when and where the transfers happened," said Dr. Dunning.

"Counterfeiting genes is giving the grasses huge advantages and helping them to adapt to their surrounding environment and survive—and this research also shows that it is not just restricted to Alloteropsis semialata as we detected it in a wide range of other species"

"This research may make us as a society reconsider how we view GM technology as grasses have naturally exploited a similar process.

"Eventually, this research may also help us to understand how can escape from GM crops to wild species or other non-GM , and provide solutions to reduce the likelihood of this happening."

"The next step is to understand the biological mechanism behind this phenomenon and we will carry out further studies to answer this."

Explore further: Scientists move a step closer to understanding species distributions in the face of climate change

More information: Luke T. Dunning el al., "Lateral transfers of large DNA fragments spread functional genes among grasses," PNAS (2019). www.pnas.org/cgi/doi/10.1073/pnas.1810031116

Related Stories

Genes may travel from plant to plant to fuel evolution: study

February 16, 2012

The evolution of plants and animals generally has been thought to occur through the passing of genes from parent to offspring and genetic modifications that happen along the way. But evolutionary biologists from Brown University ...

How drought-tolerant grasses came to be

November 23, 2011

If you eat bread stuffing or grain-fed turkey this Thanksgiving, give thanks to the grasses — a family of plants that includes wheat, oats, corn and rice. Some grasses, such as corn and sugar cane, have evolved a unique ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

EPA adviser is promoting harmful ideas, scientists say

March 22, 2019

The Trump administration's reliance on industry-funded environmental specialists is again coming under fire, this time by researchers who say that Louis Anthony "Tony" Cox Jr., who leads a key Environmental Protection Agency ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.