New 'interspecies communication' strategy between gut bacteria and mammalian hosts uncovered

February 21, 2019, Case Western Reserve University
With trillions of bacteria in the average gut, researchers decided to look for a common language that all bacterial species might use. "There is tremendous complexity in the gut, and many researchers are after the next unusual substance produced by a bacterium that might affect human health. The enormity of the gut bacteria population and its relationship to the host predicts there will be general means to communicate that we humans can recognize." ~ Jonathan Stamler, M.D. Credit: Case Western Reserve University School of Medicine

Bacteria in the gut do far more than help digest food in the stomachs of their hosts, they can also tell the genes in their mammalian hosts what to do.

A study published today in Cell describes a form of "interspecies communication" in which secrete a specific molecule——that allows them to communicate with and control their hosts' DNA, and suggests that the conversation between the two may broadly influence human health.

The researchers out of Case Western Reserve University School of Medicine, University Hospitals Cleveland Medical Center, and Harvard Medical School tracked oxide secreted by gut bacteria inside tiny worms (C. elegans, a common mammalian laboratory model). Nitric oxide secreted by gut bacteria attached to thousands of , completely changing a worm's ability to regulate its own gene expression.

The study is the first to show gut bacteria can tap into nitric oxide networks ubiquitous in mammals, including humans. Nitric oxide attaches to human proteins in a carefully regulated manner—a process known as S-nitrosylation—and disruptions are broadly implicated in diseases such as Alzheimer's, Parkinson's, asthma, diabetes, , and cancer.

The findings suggest nitric oxide is a general mechanism by which gut bacteria can communicate with mammalian hosts. Previous work to untangle communication lines to and from gut bacteria has primarily focused on rare molecules that bacteria secrete. The new findings are akin to uncovering a chemical language common across species, as opposed to single words, said senior author Jonathan Stamler, MD, director of the Institute for Transformative Molecular Medicine at Case Western Reserve University School of Medicine and president of the Harrington Discovery Institute at University Hospitals Cleveland Medical Center. "There is tremendous complexity in the gut, and many researchers are after the next unusual substance produced by a bacterium that might affect human health," he says. With trillions of bacteria in the average gut, Stamler decided to look for a common language that all bacterial species might use. "The enormity of the population and its relationship to the host predicts there will be general means to communicate that we humans can recognize."

The researchers demonstrated the phenomenon by feeding developing worms bacteria that produce nitric oxide. They then selected one very important protein—argonaute protein, or ALG-1—that is highly conserved from worms to humans and silences unnecessary genes, including genes critical for development. When nitric oxide secreted by the bacteria attached to ALG-1, they developed malformed reproductive organs and died. Too much nitric oxide from bacteria commanded the worms' DNA silencing proteins and impaired healthy development.

"Practically, animals will not let this happen," Stamler said. Instead, the authors speculate a mammalian host outside of a laboratory setting will adjust to accommodate changing nitric oxide levels. Said Stamler, "The worm is going to be able to stop eating the bacteria that make the nitric oxide, or it will begin to eat different bacteria that makes less nitric oxide, or change its environment, or countless other adaptations. But by the same token, too much nitric oxide produced by our microbiome may cause disease or developmental problems in the fetus."

The study adds to a growing body of evidence that bacteria living in the gut, determined by diet and environment, have a tremendous influence on mammalian health. Stamler imagines nitric oxide may represent an opportunity to manipulate this symbiotic relationship. Just as probiotics are designed to improve digestion, inoculating a person's gut with bacteria to improve nitric oxide signaling is conceivable. "I now think of this therapeutically, as a drug. There are tremendous opportunities to manipulate nitric oxide to improve ."

While nitric oxide and S-nitrosylation may be a general mode of interspecies communication with broad health implications, it will require additional future research. Will nitric be the only chemical communication channel? "We're basically seeing a new field opening for general strategies of communication," says Stamler. "There will be others."

Explore further: Nitric oxide tells roundworms to avoid bad bacteria

More information: Puneet, S., et al. "Regulation of microRNA machinery and development by interspecies s-nitrosylation." Cell. DOI: 10.1016/j.cell.2019.01.037 , https://www.cell.com/cell/fulltext/S0092-8674(19)30100-X

Related Stories

Heart disease severity may depend on nitric oxide levels

May 14, 2018

The most common heart medications may get an assist from nitric oxide circulating in the body, according to a new study out of Case Western Reserve University School of Medicine. Researchers showed that nitric oxide may help ...

Bacteria producing nitric oxide extend life in roundworms

February 14, 2013

Nitric oxide, the versatile gas that helps increase blood flow, transmit nerve signals, and regulate immune function, appears to perform one more biological feat— prolonging the life of an organism and fortifying it against ...

Recommended for you

Galactic center visualization delivers star power

March 21, 2019

Want to take a trip to the center of the Milky Way? Check out a new immersive, ultra-high-definition visualization. This 360-movie offers an unparalleled opportunity to look around the center of the galaxy, from the vantage ...

Ultra-sharp images make old stars look absolutely marvelous

March 21, 2019

Using high-resolution adaptive optics imaging from the Gemini Observatory, astronomers have uncovered one of the oldest star clusters in the Milky Way Galaxy. The remarkably sharp image looks back into the early history of ...

When more women make decisions, the environment wins

March 21, 2019

When more women are involved in group decisions about land management, the group conserves more—particularly when offered financial incentives to do so, according to a new University of Colorado Boulder study published ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.