New instrument unravels landscape longevity

New instrument unravels landscape longevity
Luminescence bleaching depth of an ice-polished granite surface from the Swiss Alps. Credit: Netherlands Organisation for Scientific Research (NWO)

How many years can a mountain exist? Bob Dylan's rhetorical question has just received yet another scientifically based answer. Researchers from Wageningen University & Research (WUR) and Denmark's Technical University (DTU) have developed a new method that can measure the exposure duration of rocks and sediments, leading to new insights in landscape evolution. In Scientific Reports, they reveal their innovative technique.

The interactions of sunlight with plants and animals is common knowledge that requires no special introduction. However, fewer of us realise that sunlight interacts with rocks, too, involving subtle subatomic processes that are generally difficult to observe. In a initially shielded from light, the defects within its crystals fill with over time as a result of the surrounding environmental and cosmic radiation. When this rock is then exposed to sunlight, some of the trapped charge immediately at the surface will recombine and emit photons in a process called 'luminescence."

Light empties trapped charges

As sunlight exposure continues, deeper regions within the rock will subsequently interact with the incoming sunlight and get similarly emptied of trapped charge. The between the rock's surface where no trapped charge exists and deeper regions where electron traps are fully occupied is called the luminescence bleaching depth. This depth can provide geoscientists with vital information regarding the precise timing of landscape formation, bedrock erosion rates, sediment transport distances, sky cover conditions, and so on.

Until recently, the method for determining the luminescence bleaching depth was laborious, low-resolution, and indirect—researchers were unable to isolate one kind of defect without perturbing many others. A group of researchers based in Wageningen University & Research (WUR), together with researchers at Denmark's Technical University (DTU), have now reiterated this methodology from scratch, and obtained unprecedented high-resolution 2-D maps of trapped electrons within rocks.

The new method is based on a recent discovery by DTU Nutech. Their approach uses a very specific wavelength of infrared light (830 nanometers) to stimulate a well-known electron trap in feldspar (the most common mineral within the Earth's crust). By imaging the natural photoluminescence at slightly longer wavelengths (>925 nanometers), the researchers obtained unprecedented spatial data on the luminescence bleaching depth of an ice-polished granite surface from the Swiss Alps. The results not only matched theoretical expectations for a surface continuously exposed to for 11,000 years, but also offered two additional dimensions (spatial and chemical) for understanding how light interacts with various minerals in prolonged and constant natural settings.

The findings are the result of the longstanding collaboration between the Netherlands Centre for Luminescence dating (NCL), with the Centre for Nuclear Technologies of Denmark's Technical University (DTU Nutech).

"It is unusual to be in the right place and at the right time, to convert an emerging technology into an immediate application in geoscience," says Dr. Benny Guralnik, who conceived the study and obtained funding through NWO-VENI. "It is further ironic how a couple of ad-lib measurements by my MSc intern, suddenly became the pinnacle of my VENI," says Guralnik in reference to Elaine Sellwood, who is the first author of the paper, and who since the project's completion pursues a full Ph.D. programme at DTU Nutech, aimed at improving and commercializing the prototype instrument, and further developing the method's geological applications.


Explore further

Opportunities for geothermal energy: New method reveals past underground temperatures

More information: E. L. Sellwood et al. Optical bleaching front in bedrock revealed by spatially-resolved infrared photoluminescence, Scientific Reports (2019). DOI: 10.1038/s41598-019-38815-0
Journal information: Scientific Reports

Citation: New instrument unravels landscape longevity (2019, February 22) retrieved 25 May 2019 from https://phys.org/news/2019-02-instrument-unravels-landscape-longevity.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
8 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more