InSight prepares to take Mars' temperature

February 13, 2019, Jet Propulsion Laboratory
NASA's InSight lander set its heat probe, called the Heat and Physical Properties Package (HP3), on the Martian surface on Feb. 12. Credit: NASA/JPL-Caltech/DLR

NASA's InSight lander has placed its second instrument on the Martian surface. New images confirm that the Heat Flow and Physical Properties Package, or HP3, was successfully deployed on Feb. 12 about 3 feet (1 meter) from InSight's seismometer, which the lander recently covered with a protective shield. HP3 measures heat moving through Mars' subsurface and can help scientists figure out how much energy it takes to build a rocky world.

Equipped with a self-hammering spike, mole, the instrument will burrow up to 16 feet (5 meters) below the surface, deeper than any previous mission to the Red Planet. For comparison, NASA's Viking 1 lander scooped 8.6 inches (22 centimeters) down. The agency's Phoenix lander, a cousin of InSight, scooped 7 inches (18 centimeters) down.

"We're looking forward to breaking some records on Mars," said HP3 Principal Investigator Tilman Spohn of the German Aerospace Center (DLR), which provided the probe for the InSight mission. "Within a few days, we'll finally break ground using a part of our instrument we call the mole."

HP3 looks a bit like an automobile jack but with a vertical metal tube up front to hold the 16-inch-long (40-centimeter-long) mole. A tether connects HP3's support structure to the lander, while a tether attached to the top of the mole features heat sensors to measure the temperature of the Martian subsurface. Meanwhile, heat sensors in the mole itself will measure the soil's thermal conductivity—how easily heat moves through the subsurface.

"Our probe is designed to measure heat coming from the inside of Mars," said InSight Deputy Principal Investigator Sue Smrekar of NASA's Jet Propulsion Laboratory in Pasadena, California. "That's why we want to get it belowground. Temperature changes on the surface, both from the seasons and the day-night cycle, could add 'noise' to our data."

The mole stops about every 20 inches (51 centimeters) to warm up for roughly four days; the sensors check how rapidly this happens, which tells scientists the conductivity of the soil. Between the careful burrowing action, the pauses and the time required for the science team to send commands to the instrument, more than a month will go by before the mole reaches its maximum depth. If the mole extends as far as it can go, the team will need only a few months of data to figure out Mars' internal temperature.

If the mole encounters a large rock before reaching at least 10 feet (3 meters) down, the team will need a full Martian year (two Earth years) to filter noise out of their data. This is one reason the team carefully selected a landing site with few rocks and why it spent weeks choosing where to place the instrument.

"We picked the ideal , with almost no rocks at the surface," said JPL's Troy Hudson, a scientist and engineer who helped design HP3. "That gives us reason to believe there aren't many large rocks in the subsurface. But we have to wait and see what we'll encounter underground."

However deep it gets, there's no debating that the is a feat of engineering.

"That thing weighs less than a pair of shoes, uses less power than a Wi-Fi router and has to dig at least 10 feet [3 meters] on another planet," Hudson said. "It took so much work to get a version that could make tens of thousands of hammer strokes without tearing itself apart; some early versions failed before making it to 16 feet [5 meters], but the version we sent to Mars has proven its robustness time and again."

Explore further: NASA's Martian quake sensor InSight lands at slight angle

Related Stories

Mars new home 'a large sandbox'

December 2, 2018

With InSight safely on the surface of Mars, the mission team at NASA's Jet Propulsion Laboratory in Pasadena, California, is busy learning more about the spacecraft's landing site. They knew when InSight landed on Nov. 26 ...

InSight's seismometer now has a cozy shelter on Mars

February 4, 2019

For the past several weeks, NASA's InSight lander has been making adjustments to the seismometer it set on the Martian surface on Dec. 19. Now it's reached another milestone by placing a domed shield over the seismometer ...

InSight places first instrument on Mars

December 20, 2018

NASA's InSight lander has deployed its first instrument onto the surface of Mars, completing a major mission milestone. New images from the lander show the seismometer on the ground, its copper-colored covering faintly illuminated ...

Recommended for you

Meteorite source in asteroid belt not a single debris field

February 17, 2019

A new study published online in Meteoritics and Planetary Science finds that our most common meteorites, those known as L chondrites, come from at least two different debris fields in the asteroid belt. The belt contains ...

Diagnosing 'art acne' in Georgia O'Keeffe's paintings

February 17, 2019

Even Georgia O'Keeffe noticed the pin-sized blisters bubbling on the surface of her paintings. For decades, conservationists and scholars assumed these tiny protrusions were grains of sand, kicked up from the New Mexico desert ...

Archaeologists discover Incan tomb in Peru

February 16, 2019

Peruvian archaeologists discovered an Incan tomb in the north of the country where an elite member of the pre-Columbian empire was buried, one of the investigators announced Friday.

Where is the universe hiding its missing mass?

February 15, 2019

Astronomers have spent decades looking for something that sounds like it would be hard to miss: about a third of the "normal" matter in the Universe. New results from NASA's Chandra X-ray Observatory may have helped them ...

What rising seas mean for local economies

February 15, 2019

Impacts from climate change are not always easy to see. But for many local businesses in coastal communities across the United States, the evidence is right outside their doors—or in their parking lots.

4 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

RichManJoe
5 / 5 (1) Feb 13, 2019
Curious, does the "self hammering spike" create noise in the seismometer?
SkyLight
5 / 5 (3) Feb 14, 2019
Of course it does - the hammer/mole will create a lot of noise in the seismometer readings until it reaches its' operating depth. While that's happening, the seismometer (which is VERY sensitive) is basically on standby, taking readings in the hammer's "rest pauses", but those readings will also be affected by relaxations of the subsoil, and thermal stresses in the soil and in the mole caused by the mole's heating/cooling cycles.

Only when the mole is ready to take measurements of heat flow from the interior will the seismometer be able to start it's main phase of taking measurements. That will be a few weeks away.
torbjorn_b_g_larsson
5 / 5 (3) Feb 14, 2019
Good question!

I concur, it seems they will take advantage: "As the mole burrows, it should also generate vibrations that SEIS can detect and yield information about the Martian subsurface.[22]"

[ https://en.wikipe..._Package ]
rrwillsj
not rated yet Feb 15, 2019
Mars, the Bringer of War...

Who dares to apply the rectal thermometer?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.