Immunizing quantum computers against errors

February 28, 2019, ETH Zurich
In the ETH experiment, calcium ions are made to oscillate in such a way that their wave functions look like the teeth of a comb. The measurement uncertainty can thus be distributed over many such teeth, which in principle enables precise error detection. Credit: Visualisations: Christa Flühmann / Shutterstock

Building a quantum computer requires reckoning with errors—in more than one sense. Quantum bits, or "qubits," which can take on the logical values zero and one simultaneously, and thus carry out calculations faster, are extremely susceptible to perturbations. A possible remedy for this is quantum error correction, which means that each qubit is represented redundantly in several copies, such that errors can be detected and eventually corrected without disturbing the fragile quantum state of the qubit itself. Technically, this is very demanding. However, several years ago, an alternative proposal suggested storing information not in several redundant qubits, but rather in the many oscillatory states of a single quantum harmonic oscillator. The research group of Jonathan Home, professor at the Institute for Quantum Electronics at ETH Zurich, has now realised such a qubit encoded in an oscillator. Their results have been published in the scientific journal Nature.

Periodic oscillatory states

In Home's laboratory, Ph.D. student Christa Flühmann and her colleagues work with electrically charged calcium atoms that are trapped by electric fields. Using appropriately chosen laser beams, these ions are cooled down to very low temperatures at which their oscillations in the electric fields, inside which the ions slosh back and forth like marbles in a bowl, are described by quantum mechanics as so-called . "At that point, things get exciting," says Flühmann, who is first author of the Nature paper. "We can now manipulate the oscillatory states of the ions in such a way that their position and momentum uncertainties are distributed among many periodically arranged states."

Here, "" refers to Werner Heisenberg's famous formula, which states that in quantum physics, the product of the measurement uncertainties of the position and velocity (more precisely: the momentum) of a particle can never go below a well-defined minimum. For instance, manipulating the particle in order to know its position very well—physicists call this "squeezing"—requires making its momentum less certain.

Reduced uncertainty

Squeezing a quantum state in this way is, on its own, only of limited value if the aim is to make precise measurements. However, there is a clever way out: if, on top of the squeezing, one prepares an oscillatory state in which the particle's wave function is distributed over many periodically spaced positions, the measurement uncertainty of each position and of the respective momentum can be smaller than Heisenberg would allow. Such a spatial distribution of the wave function—the particle can be in several places at once, and only a measurement decides where one actually finds it—is reminiscent of Erwin Schrödinger's famous cat, which is simultaneously dead and alive.

This strongly reduced measurement uncertainty also means that the tiniest change in the wave function, for instance by some external disturbance, can be determined very precisely and—at least in principle—corrected. "Our realisation of those periodic or comb-like oscillatory states of the ion are an important step towards such an detection," Flühmann explains. "Moreover, we can prepare arbitrary states of the ion and perform all possible logical operations on it. All this is necessary for building a computer. In a next step we want to combine that with error detection and error correction."

Applications in quantum sensors

A few experimental obstacles have to be overcome on the way, Flühmann admits. The calcium ion first needs to be coupled to another ion by electric forces, so that the oscillatory state can be read out without destroying it. Still, even in its present form the method of the ETH researchers is of great interest for applications, Flühmann explains: "Owing to their extreme sensitivity to disturbances, those oscillatory states are a great tool for measuring tiny electric fields or other physical quantities very precisely."

Explore further: A faster method to read quantum memory

More information: Flühmann C, Nyuyen TL, Marinelli M, Negnevitsky V, Mehta K, Home J: Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 27 February 2019, DOI: 10.1038/s41586-019-0960-6

Related Stories

A faster method to read quantum memory

February 25, 2019

The potential computing revolution that quantum computers have long promised is based on their weird property called superposition. Namely, qubits can take both logical states 0 and 1 simultaneously, on top of any value in ...

Easing uncertainty

April 3, 2018

Heisenberg's uncertainty principle, the fundamental impossibility of simultaneously measuring properties such as position and momentum, is at the heart of quantum theory. Physicists at ETH Zurich have now demonstrated an ...

Ion qubits offer early glimpse of quantum error detection

November 9, 2017

Computers based on quantum physics promise to solve certain problems much faster than their conventional counterparts. By utilizing qubits—which can have more than just the two values of ordinary bits—quantum computers ...

Squeezed quantum cats

May 26, 2015

ETH professor Jonathan Home and his colleagues reach deep into their bag of tricks to create so-called 'squeezed Schrödinger cats.' These quantum systems could be extremely useful for future technologies.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.