Hyperbolic metamaterials enable nanoscale 'fingerprinting'

February 12, 2019, American Institute of Physics

Hyperbolic metamaterials are artificially made structures that can be formed by depositing alternating thin layers of a conductor such as silver or graphene onto a substrate. One of their special abilities is supporting the propagation of a very narrow light beam, which can be generated by placing a nanoparticle on its top surface and illuminating it with a laser beam.

It's extremely challenging to realize in practice subwavelength images of unknown and arbitrary objects, but as University of Michigan and Purdue University researchers report in APL Photonics, it isn't always necessary to obtain a full image when something about that object is already known.

"One familiar example from everyday life is the fingerprint," said Theodore B. Norris, at the University of Michigan. "A fingerprint recognition system doesn't need to obtain a complete high-resolution image of the fingerprint—it only needs to recognize it." So Evgenii E. Narimanov, one of the co-authors, began to think about whether nanometer-scale objects could be identified without the need to obtain complete images.

The propagation direction of the beam inside a hyperbolic metamaterial depends on the wavelength of the . By sweeping the wavelength of the incident light, the narrow beam will scan across the bottom hyperbolic metamaterial and its air interface. If nano-objects are placed near the bottom interface, they scatter out light; this scattering is strongest when the narrow beam is directed toward them.

This animation shows how the beam inside the hyperbolic metamaterial changes its direction when the wavelength of the light is swept from 800 nanometers to 1,600 nanometers. Credit: Zhengyu Huang
"We can measure the scattered light power using a photodetector and plot the scattered light power versus the wavelength of the incident light," said Zhengyu Huang, a graduate student at the University of Michigan. "Such a plot encodes about the nano-objects through the wavelength of the scattering peak in the plot and encodes their material information through the height of the peak."

The plot serves as a "fingerprint," which allows the researchers to determine the distance of a bottom nano-object to be sensed relative to the top nanoparticle, as well as the separation between two nano-objects, and their material composition.

Gaining access to the nanoscale world via optics has been one of the most vigorously pursued frontiers in optics during the past decade. "The traditional microscope is limited in resolution by the wavelength of light," said Huang. "And, using a conventional microscope, the smallest feature one can resolve is about 250 nanometers for visible light—also known as the Abbe limit."

Moving beyond this limit and resolving smaller features will require some advanced technologies. "Most are imaging methods, with images containing the objects of interest as the measurement," explained Huang. "But instead of following the imaging approach, our work demonstrates a novel route to obtain spatial and material information about the microscopic world through the 'fingerprinting' process." Significantly, it can resolve two objects that are just 20 nanometers apart from each other—well beyond the Abbe limit.

"Our work could potentially find applications in biomolecular measurement," Huang said. "People are interested in determining the distance between two biomolecules with nanoscale separation, for example, which can be used to study the interaction between proteins. And our method may also be used for industrial product monitoring to determine whether nanostructured parts were manufactured to specification."

Explore further: A new way to measure the light-warping properties of hyperbolic metamaterials

More information: Zhengyu Huang et al, Nanoscale fingerprinting with hyperbolic metamaterials, APL Photonics (2019). DOI: 10.1063/1.5079736

Related Stories

New scientific concept for a Star Wars-like tractor beam

November 27, 2018

Physicists from ITMO University have developed a model of an optical tractor beam to capture particles based on new artificial materials. Such a beam is capable of moving particles or cells towards the radiation source. The ...

Real-time imaging of cell components including DNA

February 22, 2017

Optical microscopes that use lenses to bounce photons off objects have trouble distinguishing nanometer-scale objects smaller than the imaging beam's wavelength, such as proteins and DNA. An innovative 'hyperlens' designed ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.