Collaboration sparks sustainable electronics manufacturing breakthrough

February 14, 2019, Simon Fraser University
SFU Mechatronic Systems Engineering professor Woo Soo Kim is collaborating with Swiss researchers to develop an eco-friendly 3D printable solution for producing wireless Internet-of-Things sensors. The research team is using a wood-derived cellulose material to replace the plastics and polymeric materials currently used in electronics. Credit: SFU

Simon Fraser University and Swiss researchers are developing an eco-friendly, 3-D printable solution for producing wireless Internet-of-Things (IoT) sensors that can be used and disposed of without contaminating the environment. Their research has been published as the cover story in the February issue of the journal Advanced Electronic Materials.

SFU professor Woo Soo Kim is leading the research team's discovery involving the use of a wood-derived cellulose material to replace the plastics and polymeric currently used in electronics.

Additionally, 3-D printing can give flexibility to add or embed functions onto 3-D shapes or textiles, creating greater functionality.

"Our eco-friendly 3-D printed cellulose sensors can wirelessly transmit data during their life, and then can be disposed without concern of environmental contamination," says Kim, a professor in the School of Mechatronic Systems Engineering at SFU's Surrey campus. The research is being carried out at PowerTech Labs in Surrey, which houses several state-of-the-art 3-D printers used by researchers.

"This development will help to advance green electronics. For example, the waste from printed is a hazardous source of contamination to the environment. If we are able to change the plastics in PCB to cellulose composite materials, recycling of metal components on the board could be collected in a much easier way."

SFU Mechatronic Systems Engineering professor Woo Soo Kim is collaborating with Swiss researchers to develop an eco-friendly 3D printable solution for producing wireless Internet-of-Things sensors. The research team is using a wood-derived cellulose material to replace the plastics and polymeric materials currently used in electronics. Credit: SFU

Kim's research program spans two international collaborative projects, including the latest focusing on the eco-friendly cellulose material-based chemical sensors with collaborators from the Swiss Federal Laboratories for Materials Science.

He is also collaborating with a team of South Korean researchers from the Daegu Gyeongbuk Institute of Science and Technology's (DGIST)'s department of Robotics Engineering, and PROTEM Co Inc, a technology-based company, for the development of printable conductive ink materials.

In this second project, researchers have developed a new breakthrough in the embossing process technology, one that can freely imprint fine circuit patterns on flexible polymer substrate, a necessary component of electronic products.

Embossing technology is applied for the mass imprinting of precise patterns at a low unit cost. However, Kim says it can only imprint circuit patterns that are imprinted beforehand on the stamp, and the entire, costly stamp must be changed to put in different patterns.

The team succeeded in developing a precise location control system that can imprint patterns directly, resulting in a new process technology. This will have widespread implications for use in semiconductor processes, wearable devices and the display industry.

Earlier this year Kim was selected as a Brain Pool Fellow by the National Research Foundation (NRF) of Korea. An expert in 3-D printed electronics who heads SFU's Additive Manufacturing Laboratory, Kim spent six months collaborating with researchers at Seoul National University to advance fabrication of thin film transistors using 3-D printing technology.

Explore further: New breakthrough in hot embossing technology

More information: Taeil Kim et al, Electrochemical Sensors: 3D Printed Disposable Wireless Ion Sensors with Biocompatible Cellulose Composites (Adv. Electron. Mater. 2/2019), Advanced Electronic Materials (2019). DOI: 10.1002/aelm.201970007

Related Stories

New breakthrough in hot embossing technology

November 13, 2018

Korean researchers have developed a new hot embossing process technology that can freely imprint fine circuit patterns on flexible polymer substrate. The result is expected to be used in semiconductor processes, wearable ...

Cellulose from wood can be printed in 3-D

June 17, 2015

A group of researchers at Chalmers University of Technology have managed to print and dry three-dimensional objects made entirely by cellulose for the first time with the help of a 3D-bioprinter. They also added carbon nanotubes ...

Recommended for you

Great white shark genome decoded

February 18, 2019

The great white shark is one of the most recognized marine creatures on Earth, generating widespread public fascination and media attention, including spawning one of the most successful movies in Hollywood history. This ...

Light-based production of drug-discovery molecules

February 18, 2019

Photoelectrochemical (PEC) cells are widely studied for the conversion of solar energy into chemical fuels. They use photocathodes and photoanodes to "split" water into hydrogen and oxygen respectively. PEC cells can work ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.