Researchers make coldest quantum gas of molecules

February 21, 2019, National Institute of Standards and Technology
JILA researchers make coldest quantum gas of molecules
Artist's impression of JILA's record-cold quantum gas of potassium-rubidium molecules. Credit: Steven Burrows/JILA

JILA researchers have made a long-lived, record-cold gas of molecules that follow the wave patterns of quantum mechanics instead of the strictly particle nature of ordinary classical physics. The creation of this gas boosts the odds for advances in fields such as designer chemistry and quantum computing.

As featured on the cover of the Feb. 22 issue of Science, the team produced a gas of potassium-rubidium (KRb) at temperatures as low as 50 nanokelvin (nK). That's 50 billionths of a Kelvin, or just a smidge above absolute zero, the lowest theoretically possible temperature. The molecules are in the lowest-possible energy states, making up what is known as a degenerate Fermi gas.

In a quantum gas, all of the molecules' properties are restricted to specific values, or quantized, like rungs on a ladder or notes on a musical scale. Chilling the gas to the lowest temperatures gives researchers maximum control over the molecules. The two atoms involved are in different classes: Potassium is a fermion (with an odd number of subatomic components called protons and neutrons) and rubidium is a boson (with an even number of subatomic components). The resulting molecules have a Fermi character.

JILA is jointly operated by the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder. NIST researchers at JILA have been working for years to understand and control ultracold molecules, which are more complex than atoms because they not only have many internal energy levels but also rotate and vibrate. The JILA team made their first molecular gas 10 years ago.

"The basic techniques for making the gas are the same ones we've used before, but we have a few new tricks such as significantly improving the cooling of the atoms, creating more of them in the lowest-energy state," NIST/JILA Fellow Jun Ye said. "This results in a higher conversion efficiency so we get more molecules."

The JILA team produced 100,000 molecules at 250 nK and as many as 25,000 molecules at 50 nK.

Before now, the coldest two-atom molecules were produced in maximum numbers of tens of thousands and at temperatures no lower than a few hundred nanoKelvin. JILA's latest gas temperature record is much lower than (about one-third of) the level where start to take over from classical effects, and the molecules last for a few seconds—remarkable longevity, Ye said.

The new gas is the first to get cold and dense enough for the matter waves of these molecules to be longer than distances between them, making them overlap with each other to create a new entity. Scientists call this quantum degeneracy. (Quantum matter can behave as either particles or matter waves, that is, waveform patterns of the probability of a particle's location).

Quantum degeneracy also means an increase in the repulsion among fermionic particles, which tend to be loners anyway, resulting in fewer and a more stable gas. This is the first experiment in which scientists have observed collective quantum effects directly affecting the chemistry of individual molecules, Ye said.

"This is the first quantum degenerate gas of stable molecules in bulk, and the chemical reactions are suppressed—a result that nobody had predicted," Ye said.

The molecules created in this experiment are called polar molecules because they have a positive electric charge at the rubidium atom and a negative charge at the potassium atom. Their interactions vary by direction and can be controlled with electric fields. Polar molecules thus offer more tunable, stronger interactions and additional control "knobs" compared with neutral particles.

These new ultralow temperatures will enable researchers to compare chemical reactions in quantum versus classical environments and study how electric fields affect the polar interactions. Eventual practical benefits could include new chemical processes, new methods for quantum computing using charged molecules as bits, and new precision measurement tools such as molecular clocks.

The process for making the molecules begins with a gas mixture of very cold potassium and rubidium atoms confined by a laser beam. By sweeping a precisely tuned magnetic field across the atoms, scientists create large, weakly bound molecules containing one atom of each type. This technique was pioneered by Ye's colleague, the late Deborah Jin, in her 2003 demonstration of the world's first Fermi condensate.

To convert these relatively fluffy molecules into tightly bound molecules without heating the gas, scientists use two lasers operating at different frequencies—each resonating with a different energy jump in the molecules—to convert the binding energy into light instead of heat. The molecules absorb near-infrared laser light and release red light. In the process, 90 percent of the molecules are converted through an intermediate energy state, to the lowest and most stable energy level.

Explore further: Collision resonances between ultracold atom and molecules visualized for the first time

More information: Luigi De Marco et al. A degenerate Fermi gas of polar molecules, Science (2019). DOI: 10.1126/science.aau7230

Related Stories

It's a beauty: JILA's quantum crystal is now more valuable

November 5, 2015

Physicists at JILA have made their "quantum crystal" of ultracold molecules more valuable than ever by packing about five times more molecules into it. The denser crystal will help scientists unlock the secrets of magnets ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

5 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

TheWalrus
not rated yet Feb 21, 2019
How is this different from a Bose-Einstein condensate?
24volts
not rated yet Feb 21, 2019
Just curious but what would actually happen to an atom (theoretically) if some scientist managed to get one down to absolute zero?
TheWalrus
3 / 5 (2) Feb 21, 2019
Just curious but what would actually happen to an atom (theoretically) if some scientist managed to get one down to absolute zero?


There's no such thing as absolute zero. Space-time has an intrinsic temperature. The vacuum has a temperature. I don't know what the math says about your question, but physics says it's a meaningless question.
AtomSmasha
not rated yet Feb 22, 2019
How is this different from a Bose-Einstein condensate?


According to wikipedia, a Bose-Einstein condensate consists only of bosons
TheWalrus
1 / 5 (1) Feb 22, 2019
How is this different from a Bose-Einstein condensate?


According to wikipedia, a Bose-Einstein condensate consists only of bosons


Bosons, schmosons.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.