Scientists discover stability in hybrid photoelectric nanomaterials

December 12, 2018, Siberian Federal University
Fig. 1. A computer model of carbon nanotubes covered by phthalocyanines. Credit: Pavel Krasnov

A team of Siberian scientists and foreign colleagues calculated the parameters that influence the intensity of the reaction between carbon nanotubes and phthalocyanines—complex nitrogen-containing compounds. Hybrid constructions based on them are considered as new materials for solar cell batteries, sensors and optic devices. The work was published in Applied Surface Science.

Many for photoelectric devices combine two non-organic and organic chemical elements. The first may be represented by nanotubes—hollow cylinders with walls made of hexagons with atoms of carbon at vertexes. The organic part may be comprised of heterocyclic compounds such as phthalocyanines. These substances consist of several carbon rings bound with nitrogen atoms and are able to form complexes with metals. This combination is not arbitrary: Cyclic molecules donate electrons, and carbon nanostructures accept them. Continuous transitions secure electrical conductivity in a photoelectric material.

"One of the issues with hybrids like that is low stability of the chemical between the organic and non-organic parts. As a result, phthalocyanines become quite mobile on the surface of carbon nanotubes. This is a disadvantage, as in this case, certain properties are not attributed to the material homogeneously," said Pavel Krasnov, a senior research associate at the Institute for Nanotechnologies, Spectroscopy, and Quantum Chemistry, Siberian Federal University.

In the course of the work, the scientists considered the dependence of nanotubes-phthalocyanines bond stability on a number of parameters, such as diameter and form of the carbon nanostructure, nature of the metal forming a complex with the organic component, and so on. As the result of the quantum-mechanical modeling, the researchers found which parameters should be changed and how to increase bond stability to its maximum.

The chemists discovered that the position of a molecule relative to a tube was an important factor. The strongest bond was observed when a cross-shaped organic molecule "hugged" the cylinder, like a sloth hugging a thick branch. The type of a metal that forms a complex with phthalocyanine also plays an important role: In the cobalt-zinc-copper range the bond strength decreases. Another interesting relation was discovered between the orientation of the grid of hexagons and its size. For nanotubes with diameter less than 10.5 Å (one angstrom is 10-10m), the most stable bond is formed in the case of an "armchair" configuration when the connections of hexagons in the grid that are perpendicular to the axis of the tube are chair-shaped. In case of bigger diameter, the most advantageous shape is "zigzag."

"The discovered relations will help to create target hybrid nanostructures with the highest binding capacity between carbon nanotubes and phthalocyanines. These materials may be used in many areas, but their main purpose is photoelectronics," concludes Pavel Krasnov.

Explore further: Chemists improve hydrogen sensors

More information: Pavel O. Krasnov et al. Interaction of metal phthalocyanines with carbon zigzag and armchair nanotubes with different diameters, Applied Surface Science (2018). DOI: 10.1016/j.apsusc.2018.06.282

Related Stories

Chemists improve hydrogen sensors

January 18, 2018

A group of scientists from the Siberian Federal University (SFU, Krasnoyarsk, Russia) and the Nikolaev Institute of Inorganic Chemistry (NIIC, Novosibirsk, Russia) have combined the useful properties of metal phthalocyanines ...

Deformation of nanotubes to control conductivity

October 24, 2018

Scientists from the NUST MISIS Laboratory of Inorganic Nanomaterials and international colleagues have proved that it's possible to change the structural and conductive properties of nanotubes by stretching them. This finding ...

Core electron topologies in chemical bonding

June 13, 2018

YNU researchers have solved the age-old mystery of why silicon cannot replace carbon in organic compounds. A new benchmark quantum chemical calculation of C2, Si2, and their hydrides reveals a qualitative difference in the ...

Converting Nitrogen to a More Useful Form

January 9, 2007

Nitrogen-containing organic compounds are important products as well as intermediates for many pharmaceuticals, agrochemicals, and chemicals used in electronics. Air contains plenty of nitrogen, but it is in a form that cannot ...

New record set for carbon-carbon single bond length

March 8, 2018

Hokkaido University researchers have synthesized an organic compound with a longer bond between carbon atoms than ever before—exceeding the assumed limit for carbon-carbon single bond (C-C) lengths. The researchers termed ...

Recommended for you

Materials chemists tap body heat to power 'smart garments'

January 22, 2019

Many wearable biosensors, data transmitters and similar tech advances for personalized health monitoring have now been "creatively miniaturized," says materials chemist Trisha Andrew at the University of Massachusetts Amherst, ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.