Study peels back details on mammalian keratin genes and adaptation to living on land or sea

December 14, 2018, Oxford University Press
The main proteins of the outermost skin layers of terrestrial mammals, including humans, are dispensable in aquatic mammals, such as dolphins, whales, and manatees. The epidermis of dolphins is approximately 50 times thicker than normal human epidermis. Keratins K1, K2, and K10 have been lost and replaced by keratins K6 and K17 in dolphins. Credit: Leopold Eckhart, Department of Dermatology, Medical University of Vienna

Whether by land or by sea, mammals live in a diverse variety of protective skins adapted against the elements, from swimming in the deepest azure oceans to climbing precipitous mountain peaks.

Now, Medical University of Vienna professor Leopold Eckhart and colleagues have performed one of the largest comparative genomic studies to help determine the key molecular and evolutionary origins of mammalian adaptations seen in proteins.

In a new study appearing recently in the advanced online edition of the journal Molecular Biology and Evolution, Eckhart's team homed in on which genes, among the dozens of mammalian keratin genes, are required for living on land or in the sea. The products of these keratin genes assemble to form the girders of the cytoskeleton in skin cells, called keratinocytes, that maintain a tight barrier between the body and the outside world.

"The results of the present study provide important new data on the evolution of keratins that control the mechanical stability of the , the outermost layer of the skin," said Eckhart.

In terrestrial mammals, the epidermis depends on different keratins to maintain the barrier to the environment and to regenerate the epidermis if the skin is wounded. The new report proposes that fully aquatic mammals continuously use the epidermal regeneration program and therefore require only one of the two sets of epidermal keratins.

"It is surprising that the main proteins of the outermost skin layers of terrestrial mammals, including humans, are dispensable in aquatic mammals, such as dolphins, whales, and manatees," said Eckhart. "And it is remarkable that a stress response program was the starting point of an evolutionary innovation: the new architecture of the epidermis in aquatic mammals."

The epidermis of dolphins is approximately 50 times thicker than normal human epidermis. Keratins K1, K2, and K10 have been lost and replaced by keratins K6 and K17 in dolphins.

Both the thickening of the epidermis and the key roles of K6 and K17 are also found in human skin wound healing and in lesional skin of patients with psoriasis. In this common skin disease, so-far-unknown genetic factors predispose skin cells to trigger the evolutionarily ancient wound healing program of the epidermis.

"At this point evolutionary biology meets dermatological research, and we hope that this type of 'translational research' will yield further insights for the benefit of patients in the future," said Eckhart.

The at the Medical University of Vienna also discovered previously underestimated complexity in the epidermal keratin composition due to so-called "alternative splicing" keratin K10 mRNA and adaptations of keratin gene sets in terrestrial mammals. However, an entire remodeling of the cytoskeleton has occurred only in fully aquatic mammals.

"Our data point to a general pattern of skin evolution: proteins of innermost skin layers are the most conserved, and proteins of the outermost layers are the most diverse," said Eckhart. "The interactions between keratins and other epidermal proteins need further studies. With progress in and new lines of experimental research, the evolution of the skin will remain an exciting and fruitful research topic."

Explore further: How the skin protects

More information: Molecular Biology And Evolution (2018). DOI: 10.1093/molbev/msy214

Related Stories

How the skin protects

April 20, 2018

Epidermis, the outermost layer of the skin, provides the critical protective barrier needed for terrestrial life. The process of epidermal barrier formation includes conversion of the essential fatty acid linoleate into skin-relevant ...

Coming out of their evolutionary shells

November 24, 2015

One of the wonders of evolutionary innovation in animals is the turtle shell, which differs from any other reptilian defense adaptation, giving up teeth or venom in exchange for an impenetrable shield.

Researchers report epidermal cell differentiation findings

November 9, 2017

To ensure the barrier function of the skin, mutual regulation of connections between epidermal cells and a receptor for growth factors is necessary. These findings can help to reduce the effects of inflammatory skin diseases ...

Recommended for you

The solid Earth breathes

March 26, 2019

The solid Earth breathes as volcanoes "exhale" gases like carbon dioxide (CO2)—which are essential in regulating global climate—while carbon ultimately from CO2 returns into the deep Earth when oceanic tectonic plates ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.