Understanding magnetism changes caused by crystal lattice expansion

December 4, 2018, Osaka University
Figure: Schematic illustration of the helimagnetic-ferromagnetic transition driven by the lattice expansion/compression in the cubic perovskite Sr1-xBaxCoO3. Credit: S. Ishiwata and H. Sakai

The pattern of arrangement of atoms in a crystal, called the crystal lattice, can have a huge effect on the properties of solid materials. Controlling and harnessing these properties is a challenge that promises rewards in applications such as novel sensors and new solid-state devices. An international research collaboration, including researchers from Osaka University, has reported the induction of an interesting type of magnetic order, called helimagnetism, in a cobalt oxide material by expanding its lattice structure. Their findings were published in Physical Review Materials.

Magnetic behavior results from the order of the magnetic moments of the many individual atoms in a material. In helimagnetism, instead of the being aligned—as they are in , producing ferromagnetism—the moments arrange themselves in a helical pattern. This behavior is generally only observed in complicated lattice structures where different types of magnetic interactions compete with each other, therefore the report of induced helimagnetism in a simple cubic cobalt oxide structure, is highly significant.

"We have shown emergent helical spin order in a cubic perovskite-type material, which we achieved simply by expanding the lattice size," study first author Hideaki Sakai says. "We were able to control the size of the lattice expansion by using a high-pressure technique to grow a series of single crystals with particular chemical compositions. Changing the amount of different ions in our materials provided us with sufficient control to investigate the ."

Systematically replacing strontium ions in the structure with larger barium ions caused the lattice to continually expand until the regular ferromagnetic magnetic order present at was disrupted, resulting in helimagnetism. These experimental findings were successfully supported by calculations.

"The fact that we were able to largely reproduce our findings by first principles calculations verifies that the magnetic interactions in the materials are highly sensitive to the lattice constant," Sakai says. "The more we can understand about the magnetic behavior of crystalline materials, the closer we move towards translating their properties into useful functions. We hope that our findings will pave the way for novel sensor applications."

The control of magnetic order simply by changing the lattice chemistry, as demonstrated by this research, provides a foundation for investigating the properties of many other crystalline materials.

Explore further: Researcher employs HFIR to explore the mysterious world of quantum spin

More information: H. Sakai et al. Negative-pressure-induced helimagnetism in ferromagnetic cubic perovskites Sr1−xBaxCoO3, Physical Review Materials (2018). DOI: 10.1103/PhysRevMaterials.2.104412

Related Stories

Modeling crystal behavior—toward answers in self-organization

September 17, 2018

The electrical and mechanical responses of crystal materials, and the control of their coupled effect, form one of the central themes in material science. They are vital to applications such as ultrasonic generators and non-volatile ...

Chemical 'pressure' tuning magnetic properties

December 13, 2017

Unusual, tiny vortexes spinning on the surface of certain magnets could offer a way to reduce the energy demands of computers. Controlling the vortexes is key. Scientists found that chemical substitution in a well-studied ...

Physicists study complex magnetism in a rare earth compound

July 31, 2018

Dysprosium germanide (DyGe3) is a silver-white compound that forms refractory oxides that are almost insoluble in water. In a recent study, scientists applied the pressure of eight GPa to obtain polycrystal samples of dysprosium ...

New insight into an intriguing state of magnetism

December 18, 2012

(Phys.org)—Magnonics is an exciting extension of spintronics, promising novel ways of computing and storing magnetic data. What determines a material's magnetic state is how electron spins are arranged (not everyday spin, ...

Recommended for you

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

Stretched quantum magnetism uncovered by quantum simulation

December 13, 2018

By studying ultracold atoms trapped in artificial crystals of light, Guillaume Salomon, a postdoc at the Max-Planck-Institute of Quantum Optics and a team of scientists have been able to directly observe a fundamental effect ...

The secret life of cloud droplets

December 13, 2018

Do water droplets cluster inside clouds? Researchers confirm two decades of theory with an airborne imaging instrument.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.