High-efficiency discovery drives low-power computing

December 13, 2018, University of Alberta
Credit: University of Alberta

Challenge any modern human to go a day without a phone or computer, and you'd be hard pressed to get any takers. Our collective obsession with all things electronic is driving a dramatic daily drain on the world's power. In fact, according to studies from the Semiconductor Research Corporation, if we continue on pace with our current ever-increasing energy consumption, by the year 2035, we will use all of the world's energy to run our computers—an impossible/unsustainable situation.

To combat this looming , enter Robert Wolkow. The University of Alberta atomic physicist has devoted his career to developing greener, faster, smaller technology. Research published by his lab this week points to tangible solutions that technology developers can implement now to save society's power for the next generation.

"Today's electronics have reached a point of maturation and can't be made any better. We have to stop using so much electricity to run our computers, and that means we need a drastic change in the kind of computers we use," said Wolkow, noting that today's computers can't run much faster than computers made 10 years ago.

"The atom-scale devices we are developing create a new basis for electronics that will be able to run at least 100 times faster or operate at the same speed as today but using 100 times less energy," continued Wolkow. "We have plotted a path to sustainable, responsible economic growth and that's good for everyone."

Extending the silicon road map

Wolkow's findings, supported by his graduate students and research associates at the University of Alberta and the National Research Council Canada as well as spinoff Quantum Silicon Inc. (QSi), demonstrate not only the option to trade speed and power but also the scalability of binary atomic logic.

"It's still a familiar binary computer. You can run the same programs. The insides are just a lot better" said Wolkow of his new all silicon device design. "Because our components are made of silicon, we make a straightforward marriage of the new atomic-scale technology with the standard CMOS technology that powers today's electronics, providing an easy entryway to market."

Explore further: Electrical currents can be now be switched on and off at the smallest conceivable scale

More information: Taleana Huff et al, Binary atomic silicon logic, Nature Electronics (2018). DOI: 10.1038/s41928-018-0180-3

Related Stories

Atomic-scale manufacturing now a reality

May 23, 2018

Scientists at the University of Alberta have applied a machine learning technique using artificial intelligence to perfect and automate atomic-scale manufacturing, something which has never been done before. The vastly greener, ...

Writing the future of rewritable memory

July 23, 2018

Scientists at the University of Alberta in Edmonton, Canada have created the most dense, solid-state memory in history that could soon exceed the capabilities of current hard drives by 1,000 times.

Recommended for you

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...

Researchers report new light-activated micro pump

March 11, 2019

Even the smallest mechanical pumps have limitations, from the complex microfabrication techniques required to make them to the fact that there are limits on how small they can be. Researchers have announced a potential solution—a ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.