Helium exoplanet inflated like a balloon, research shows

December 6, 2018, University of Exeter
A helium exoplanet inflated like a balloon, research shows. Credit: Denis Bajram

Astronomers have discovered a distant planet with an abundance of helium in its atmosphere, which has swollen to resemble an inflated balloon.

An international team of researchers, including Jessica Spake and Dr. David Sing from the University of Exeter, have detected the inert gas escaping from the atmosphere of the HAT-P-11b—found 124 from Earth and in the Cygnus constellation.

The remarkable breakthrough was led by researchers from the University of Geneva, who observed the exoplanet using the spectrograph called Carmenes, installed on the 4-metre telescope at Calar Alto, Spain.

For the first time, the data revealed the speed of atoms in the upper atmosphere of the exoplanet, which is equivalent in size to Neptune. The helium is in an extended cloud that is escaping from the planet, just as a helium balloon might escape from a person's hand.

The research team believe that the ground-breaking study could open up new understandings of the extreme atmospheric conditions found around the hottest exoplanets.

The research is published in the leading journal, Science, on December 6 2018.

Jessica Spake, part of Exeter's Physics and Astronomy department said: "This is a really exciting discovery, particularly as helium was only detected in exoplanet atmospheres for the first time earlier this year. The observations show helium being blasted away from the planet by radiation from its host star. Hopefully we can use this new study to learn what types of planets have large envelopes of hydrogen and helium, and how long they can hold the gases in their atmospheres."

Helium was first detected as an unknown yellow spectral line signature in sunlight in 1868. Devon-based astronomer Norman Lockyer was the first to propose this line was due to a new element, and named it after the Greek Titan of the Sun, Helios. It has since been discovered to be one of the main constituents of the planets Jupiter and Saturn in our Solar System.

It is also the second most common element in the universe and was long- predicted to be one of the most readily-detectable gases on giant exoplanets. However, it was only successfully found in an exoplanet atmosphere earlier this year, in a pioneering study also led by Jessica Spake.

For this new study, the used the spectrograph, Carmenes, to pull apart the star's light into its component colours, like a rainbow, to reveal the presence of helium. The 'rainbow' data, called a spectrum, also tells us the position and speed of helium atoms in the upper atmosphere of HAT-P-11b, which is 20 times closer to its star than the Earth is from the Sun.

Romain Allart, Ph.D. student at the University of Geneva and first author of the study said: "We suspected that this proximity with the star could impact the atmosphere of this exoplanet. The new observations are so precise that the exoplanet is undoubtly inflated by the stellar radiation and escapes to space."

Artist impression video of a WASP-69b with its helium tail orbiting its host star. Credit: Gabriel Perez Diaz (IAC)

These new observations are supported by a state-of-the-art computer simulation, led by Vincent Bourrier, co-author of the study and member of the European project FOUR ACES, used to track the trajectory of helium atoms.

Vincent Bourrier explained: "Helium is blown away from the day side of the planet to its night side at over 10,000 km an hour. Because it is such a light gas, it escapes easily from the attraction of the planet and forms an extended cloud all around it."

It is this phenomenon that makes HAT-P-11b so inflated, like a helium balloon.

The first detection of helium earlier this year, led by University of Exeter researchers, opened a new window to observe the extreme atmospheric conditions reigning in the hottest exoplanets. These new observations from Carmenes demonstrate that such studies, long thought feasible only from space, can be achieved with greater precision from ground-based telescopes equipped with the right kind of instruments.

Explore further: Helium detected in exoplanet atmosphere for the first time

More information: R. Allart el al., "Spectrally resolved helium absorption from the extended atmosphere of a warm Neptune-mass exoplanet," Science (2018). science.sciencemag.org/lookup/ … 1126/science.aat5879

Related Stories

Iron and titanium in the atmosphere of an exoplanet

August 15, 2018

Exoplanets, planets in other solar systems, can orbit very close to their host stars. When the host star is much hotter than the sun, the exoplanet becomes as hot as a star. The hottest "ultra-hot" planet was discovered last ...

The return of the comet-like exoplanet

September 14, 2017

Astronomers from the University of Geneva (UNIGE), Switzerland and collaborators used the Hubble Space Telescope to study an exoplanet that had been observed losing its atmosphere, forming an enormous cloud of hydrogen and ...

The stuff that planets are made of

October 10, 2018

UZH researchers have analyzed the composition and structure of faraway exoplanets using statistical tools. Their analysis indicates whether a planet is Earth-like, made up of pure rock, or a water-world. The larger the planet, ...

Hubble captures blistering pitch-black planet

September 14, 2017

Astronomers have discovered that the well-studied exoplanet WASP-12b reflects almost no light, making it appear essentially pitch black. This discovery sheds new light on the atmospheric composition of the planet and also ...

Recommended for you

Mystery of coronae around supermassive black holes deepens

December 18, 2018

Researchers from RIKEN and JAXA have used observations from the ALMA radio observatory located in northern Chile and managed by an international consortium including the National Astronomical Observatory of Japan (NAOJ) to ...

New bright high-redshift quasar discovered using VISTA

December 18, 2018

Using the Visible and Infrared Survey Telescope for Astronomy (VISTA), astronomers have detected a new bright quasar at a redshift of about 6.8. The newly identified quasar, designated VHS J0411-0907, is the brightest object ...

NASA's 1st flight to moon, Apollo 8, marks 50th anniversary

December 18, 2018

Fifty years ago on Christmas Eve, a tumultuous year of assassinations, riots and war drew to a close in heroic and hopeful fashion with the three Apollo 8 astronauts reading from the Book of Genesis on live TV as they orbited ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

FredJose
not rated yet Dec 07, 2018
his new study to learn what types of planets have large envelopes of hydrogen and helium, and how long they can hold the gases in their atmospheres.

Well, this is certainly a very interesting discovery and that question will probably bring along some very enigmatic and entertaining answers. First the rate of escape needs to be determined. Then assumption need to be made about the amount of helium still present and also how long this process has already been going on for and whether the rate of escape was constant. It will indeed be an interesting show to watch!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.