The stuff that planets are made of

October 10, 2018, University of Zurich
Possible model of exoplanets with a rocky core and gaseous atmosphere (artist's impression). Credit: UZH

UZH researchers have analyzed the composition and structure of faraway exoplanets using statistical tools. Their analysis indicates whether a planet is Earth-like, made up of pure rock, or a water-world. The larger the planet, the more hydrogen and helium surround it.

Is there a second Earth out there in space? The knowledge of extra-solar planetary systems is rising as new technologies sharpen the view of distant objects. To date, 3,700 planets have already been discovered outside the solar system. The planetary masses and of these can be used to infer their mean density, but not their exact chemical composition and structure. The intriguing question about what these planets could look like is thus still open.

"Theoretically, we can assume various compositions, such as a world of pure water, a world of pure rock, and planets that have hydrogen-helium atmospheres and estimate the radii expected," says Michael Lozovsky, a doctoral candidate in the group of Prof. Ravit Helled at the Institute for Computational Science at the University of Zurich.

Lozovsky and collaborators have used databases and to characterize exoplanets and their atmospheres. Exoplanets are fairly common and surrounded by a volatile layer of hydrogen and helium. However, the directly measured data previously didn't allow the researchers to determine the exact structure, since different compositions may lead to the same mass and radius. In addition to the accuracy of the data relating to mass and radius, the research team also investigated the assumed internal structure, temperature and reflected radiation in 83 of the 3,700 known planets for which the masses and radii are well-determined.

Possible model of exoplanets with a rocky core and gaseous atmosphere (artist's impression). Credit: UZH
"We used a statistical analysis to set limits on possible compositions. Using a database of detected exoplanets, we found that every theoretical planetary structure has a 'threshold radius,' a planetary radius above which no planets of this composition exist," explains Michael Lozovsky. The amount of elements in the gaseous layer that are heavier than helium, the percentage of hydrogen and helium, as well as the distribution of elements in the atmosphere are important factors in determining the threshold radius.

Super-Earths and mini-Neptunes

The researchers found that planets with a radius of up to 1.4 times that of Earth (6,371 kilometers) can be Earth-like, i.e., have a similar to Earth. Planets with radii above this threshold have a higher share of silicates or other light materials. Most of the planets with a radius above 1.6 radii of the Earth must have a layer of hydrogen-helium gas or water in addition to their rocky core, while those larger than 2.6 Earth radii can't be water worlds and therefore might be surrounded by an atmosphere. Planets with radii larger than four Earth radii are expected to be very gaseous and consist of at least 10 percent hydrogen and helium, similar to Uranus and Neptune.

The findings of the study provide new insights into the development and diversity of these planets. One particularly interesting threshold concerns the difference between large terrestrial planets—otherwise known as super-Earths—and small, gaseous planets, also referred to as mini-Neptunes. According to the researchers, this threshold lies at a radius of three times that of Earth. Below this threshold, it is therefore possible to find -like in the vast expanse of the galaxy.

Explore further: A new classification scheme for exoplanet sizes

More information: M. Lozovsky, R. Helled, C. Dorn, and J. Venturini. Threshold Radii of Volatile-Rich Planets. Astrophysics. Astrophysical Journal, 9. October 2018. DOI: 10.3847/1538-4357/aadd09

Related Stories

A new classification scheme for exoplanet sizes

September 24, 2018

There are about 4433 exoplanets in the latest catalogs. Their radii have generally been measured by knowing the radius of their host star and then closely fitting the lightcurves as the planet transits across the face of ...

A stellar system with three super-Earths

March 2, 2018

Over 3500 extra-solar planets have been confirmed to date. Most of them were discovered using the transit method, and astronomers can combine the transit light curves with velocity wobble observations to determine the planet's ...

Three 'super-Earths' orbiting a cool dwarf star discovered

January 23, 2018

Using NASA's prolonged Kepler mission, known as K2, astronomers have found three new "super-Earth" exoplanets. The newly detected alien worlds orbit the cool dwarf star designated LP415-17. The finding is reported January ...

Recommended for you

Researchers investigate the peculiar radio source IC 1531

October 17, 2018

An international team of researchers has investigated a peculiar extragalactic radio source known as IC 1531. The new study analyzes the nature of IC 1531's high-energy emission, suggesting that the source is a radio galaxy. ...

Astronomers find a cosmic Titan in the early universe

October 17, 2018

An international team of astronomers has discovered a titanic structure in the early Universe, just two billion years after the Big Bang. This galaxy proto-supercluster, nicknamed Hyperion, is the largest and most massive ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

Double dust ring test could spot migrating planets

October 17, 2018

New research by a team led by an astrophysicist at the University of Warwick has a way of finally telling whether newly forming planets are migrating within the disc of dust and gas that typically surrounds stars or whether ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Nik_2213
5 / 5 (2) Oct 10, 2018
Free to read at... https://arxiv.org...9872.pdf

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.