Genetically modified pigs resist infection with the classical swine fever virus

December 13, 2018, Public Library of Science
Genetically modified pigs resist infection with the classical swine fever virus
TG pigs exhibit antiviral responses during CSFV infection. H. Histopathological changes in the NTG pigs were confirmed by HE staining. These histopathological changes included a decrease in splenic white pulp and hyperaemia; an expansion of splenic red pulp; acidophilic change and accumulation of lipid droplets in hepatocytes; infiltration of inflammatory cells in the portal area of the liver; alveolar effusion, bleeding and infiltration of a large number of inflammatory cells in the lungs; and unclear renal tubular epithelial cell boundaries; and cell cavitation in the kidneys. Credit: Xie Z, et al. (2018)

Researchers have developed genetically modified pigs that are protected from classical swine fever virus (CSFV), according to a study published December 13 in the open-access journal PLOS Pathogens by Hongsheng Ouyang of Jilin University, and colleagues. As noted by the authors, these pigs offer potential benefits over commercial vaccination and could reduce economic losses related to classical swine fever.

CSFV is responsible for a highly contagious, often fatal disease that causes significant . Due to the economic importance of this virus to the pig industry, the biology of CSFV has been investigated extensively. Despite efforts by many government authorities to stamp out the disease from pig populations, it remains widespread, and it is only a matter of time before the virus is reintroduced and the next round of disease outbreaks occurs. There is an urgent need to develop effective approaches to eradicate CSFV. To address this challenge, Ouyang and colleagues generated CSFV-resistant by combining a gene-editing tool called CRISPR/Cas9 with RNA interference (RNAi), a technique that silences gene expression.

The researchers demonstrated that these pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality. Moreover, resistance could be stably transmitted to first-generation offspring. Currently, the researchers are conducting long-term studies to monitor the safety and effectiveness of this approach as these animals age. According to the authors, generating anti-CSFV pigs using a genome editing-based strategy could be a direct and effective approach to facilitate the permanent introduction of novel traits into the mass population of production pigs via conventional breeding techniques. In addition, this antiviral strategy can be applied to other domestic species and could provide insights for future antiviral research.

Ouyang adds, "These tansgenic pigs could effectively limit the replication of CSFV and reduce CSFV-associated clinical signs and mortality."

Explore further: China culls thousands of pigs as African swine fever spreads

More information: Zicong Xie et al, Genetically modified pigs are protected from classical swine fever virus, PLOS Pathogens (2018). DOI: 10.1371/journal.ppat.1007193

Related Stories

'Very serious': African swine fever spreads in China

November 15, 2018

African swine fever has spread rapidly to more than half of China's provinces despite measures to contain it, the government said, warning that a situation previously described as under control had become "very serious."

Games help improve software security

December 5, 2013

Ever more sophisticated cyber attacks exploit software vulnerabilities in the Commercial Off-the-Shelf (COTS) IT systems and applications upon which military, government and commercial organizations rely. The most rigorous ...

Recommended for you

NASA's Mars 2020 rover is put to the test

March 20, 2019

In a little more than seven minutes in the early afternoon of Feb. 18, 2021, NASA's Mars 2020 rover will execute about 27,000 actions and calculations as it speeds through the hazardous transition from the edge of space to ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.