Flexible thermoelectric generator module: a silver bullet to fix waste energy issues

December 18, 2018, Osaka University
Flexible thermoelectric generator module: a silver bullet to fix waste energy issues
Figure 1. Photo and schematic design of the FlexTEG module, photo of Bismuth-telluride (Bi-Te) semiconductor chips, and voltage and power as a function of the current for the FlexTEG module at different temperature gradients. Credit: Osaka University

A team of researchers led by Osaka University developed an inexpensive large-scale flexible thermoelectric generator (FlexTEG) module with high mechanical reliability for highly efficient power generation. Through a change in direction of the top electrodes at the two sides of the module and the use of high density packaging of semiconductor chips, the FlexTEG module has more flexibility in any uniaxial direction. This improved efficiency of recovery, or thermoelectric conversion, of waste heat from a curved heat source, enhancing the module's mechanical reliability as less mechanical stress is placed on semiconductor chips in the module.

The team's research results were published in Advanced Materials Technologies.

It is said that Society 5.0, a super-smart society in which our living space will be networked by various IoT (Internet of Things) technologies, will come in the near future. A thermoelectric generation system to permanently generate power by efficiently recovering emitted in the environment is an effective means to conserve the global environment and save energy, and research for applying this system to energy sources for next-generation IoT devices has gained attention.

Thermoelectric conversion technology directly converts thermal energy to , and vice versa. Since it allows for energy conversion according to even if the difference is small, this next-generation technology will contribute to energy harvesting, a process that captures small amounts of energy that would otherwise be lost.

Thermoelectric conversion is one of the most suitable techniques for converting low-temperature (150°C or lower) waste into electric power, leading to the development of power generation systems using the TEG module. However, since the packaging technique of thermoelectric generation modules that can operate in a range of 100-150°C has not yet been established, thermoelectric generation technology for that range has not seen practical use. In addition, the production cost of modules for generating power at room temperature was so high that applications of the technology were limited to specific areas, such as applications in space.

By mounting small thermoelectric (TE) semiconductor chips on a flexible substrate at high packaging density, the researchers achieved reliable and stable adhesion with electrical contacts between the chips and the flexible substrate, realizing efficient recovery (thermoelectric conversion) of waste heat. In conventional nonflexible thermoelectric conversion modules, the top electrodes at the two sides were perpendicularly mounted to the other top electrodes, so the curvature of the module was limited. However, in this FlexTEG module, all of the top electrodes were integrated in parallel, providing flexibility when bent in any uniaxial direction. This reduced on chips, improving mechanical (physical) reliability of the FlexTEG module.

Flexible thermoelectric generator module: a silver bullet to fix waste energy issues
Figure 2. (a) Schematic design of the FlexTEG module, p- and n-type chip patterning structure of two uncouples (b) in the conventional approach and (c) in this study. Credit: Osaka University

Lead author Tohru Sugahara says, "Because of heat resistance of all semiconductor packaging materials (up to around 150°C) and mechanical flexibility of the module, our FlexTEG module will be used as a conversion thermoelectric generator module for waste heat of 150°C or lower. Its mounting technique is based on conventional semiconductor packaging techniques, so mass production and cost reduction of modules are anticipated."

Explore further: Materials that harvest heat and turn it into electricity could lead to more cost-effective devices

More information: Tohru Sugahara et al. Fabrication with Semiconductor Packaging Technologies and Characterization of a Large‐Scale Flexible Thermoelectric Module, Advanced Materials Technologies (2018). DOI: 10.1002/admt.201800556

Related Stories

Reusing waste energy with 2-D electron gas

November 20, 2017

More than 60 percent of the energy produced by fossil fuels is lost as heat. Thermoelectric energy conversion has attracted much attention as a way to convert waste heat from power plants, factories and cars into electricity. ...

Recommended for you

Power stations driven by light

January 16, 2019

Green plants, algae and some bacteria use sunlight to convert energy. The pigments in chlorophyll absorb electromagnetic radiation, which induces chemical reactions in electrons. These reactions take place in the nucleus ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.