Invention promises airport security screening without queues

December 13, 2018, Australian National University
Credit: Australian National University

A research team led by The Australian National University (ANU) has invented a device that could be developed into ultra-sensitive cameras for security screening which would not require people to queue at airports.

Other applications could include smaller and safer sensors for driverless vehicles.

Lead researcher Dr. Mingkai Liu said the research had already led to a proof-of-concept prototype and provisional patent.

The device is made with metasurfaces, which are ultra-compact complex structures that can control the direction of to perform highly advanced sensing functions.

"This device can sense the entire environment surrounding it with unprecedented precision—previously, multiple fixed sensors pointing towards different directions would be required to achieve this," said Dr. Liu from the Nonlinear Physics Centre at the ANU Research School of Physics and Engineering.

Dr. Liu said the concept could benefit the development of super-sensitive cameras for security systems at airports.

"These future cameras could identify hazardous devices or dangerous chemicals in people's carry-on baggage when they walk through an airport, without needing them to queue up and go through the various procedures that are necessary now," he said.

"Unlike conventional cameras used in CCTV, this type of cannot recognise people's faces."

Dr. Liu said the concept could provide a new foundation for next-generation electromagnetic devices, including more compact sensors for driverless cars and other vehicles that can help to overcome safety challenges encountered with today's technologies.

These safety challenges include sensing hazards in rough weathers or narrow spaces.

Co-author Dr. David Powell said the new device was the first of its kind to be arbitrarily tuneable so that it can direct electromagnetic waves towards any direction or control multiple beams to perform different functions at the same time.

"Our research provides the first theoretical and experimental demonstration that dynamic and arbitrary control of electromagnetic waves is possible," said Dr. Powell from the Nonlinear Physics Centre at the ANU Research School of Physics and Engineering.

Professor Ilya Shadrivov, the leader of the microwave and terahertz group at the Nonlinear Physics Centre, said the would continue to develop the device so that it is ready to be commercialised and manufactured on a large scale.

"We are very interested in realising the concept at other frequency bands, including terahertz and even optical frequencies. We also hope to collaborate with industrial partners to explore the full potential of this concept in practical applications," Professor Shadrivov said.

Explore further: Tiny camera lens may help link quantum computers to network

More information: Mingkai Liu et al. Huygens' Metadevices for Parametric Waves, Physical Review X (2018). DOI: 10.1103/PhysRevX.8.031077

Related Stories

'Folded' optical devices manipulate light in a new way

October 31, 2018

The next generation of electronic devices, ranging from personal health monitors and augmented reality headsets to sensitive scientific instruments that would only be found in a laboratory, will likely incorporate components ...

Scientists create 'Swiss army knife' for electron beams

April 4, 2018

DESY scientists have created a miniature particle accelerator for electrons that can perform four different functions at the push of a button. The experimental device is driven by a terahertz radiation source and can accelerate, ...

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.