Enhanced views of Earth tectonics

November 5, 2018, British Antarctic Survey
Enhanced views of Earth tectonics
Global shape index derived from GOCE satellite gravity data. Dome-ridge features characterise Earth’s oceans while valley to bowl features prevail over continents. Several deep blue areas on the map reveal different cratons -some of the oldest cores of the continents, e.g. in Canada, Greenland, Africa and Antarctica. Credit: British Antarctic Survey

Scientists from Germany's Kiel University and British Antarctic Survey (BAS) have used data from the European Space Agency (ESA), Gravity field and steady-state Ocean Circulation Explorer (GOCE) mission to unveil key geological features of the Earth's lithosphere – the rigid outer layer that includes the crust and the upper mantle.

Published this week in the journal Scientific Reports the study is a step forward in the quest to image the structure and setting of different continents using satellite data, including Antarctica, the least understood piece of the whole plate tectonic puzzle. Satellite gravity provides a new tool to link the remote and ice-covered continent with the rest of the Earth. This improves our understanding of Antarctica's deep structure, which is particularly important, as the properties of its can also influence the overlying ice sheets.

OCE measures differences in horizontal and vertical components of the – known as gradients. These gradients can be complex to interpret and so the authors combined these to produce simpler 'curvature images' that reveal large-scale tectonic features of the Earth more clearly.

Lead author, Prof. Jörg Ebbing from the Kiel University said: "Our new gradient images improve our knowledge of Earth's deep structure. The gravity data can be combined with seismological data to produce more consistent images of the crust and in 3-D. This is crucial to understanding how plate tectonics and deep mantle dynamics interact."

Shape index for Antarctica in a Gondwana supercontinent plate reconstruction since ca 200 Ma ago. The new satellite gravity data help study the Antarctic lithosphere and its former links with Africa, India, Australia, Zealandia and South America. Credit: British Antarctic Survey

Dr. Fausto Ferraccioli, Science Leader of Geology and Geophysics at the British Antarctic Survey and co-author of the study, said, "Satellite gravity is revolutionizing our ability to study the lithosphere of the entire Earth, including its least understood continent, Antarctica. In East Antarctica, for example, we now begin to see a more complex mosaic of ancient lithosphere provinces. GOCE shows us fundamental similarities but also unexpected differences between its lithosphere and other continents, to which it was joined until 160 million years ago."

The new study presents a view of the Earth's continental crust and upper mantle not previously achievable using global seismic models alone. The authors noted that, despite their similar seismic characteristics, there are contrasts in the gravity signatures for ancient parts of the lithosphere (known as cratons), indicating differences in their deep structure and composition. These features are important. Because they form the oldest cores of the lithosphere, they hold key records of Earth's early history.

Shape index for the Antarctic continent superimposed on bed topography. The contrast between the thinner crust and lithosphere of West Antarctica and the thicker crust and lithosphere of East Antarctica is apparent. The gravity image also suggests that East Antarctica is a mosaic of old cratons separated by younger orogens, similar to Australia and India. The pronounced blue area in West Antarctica may be related to the proposed Marie Byrd mantle plume, a feature of major interest for investigating the potential for high geothermal heat flux beneath parts of the West Antarctic Ice Sheet. Credit: British Antarctic Survey

Explore further: New gravity dataset will help unveil the Antarctic continent

More information: Jörg Ebbing et al. Earth tectonics as seen by GOCE - Enhanced satellite gravity gradient imaging, Scientific Reports (2018). DOI: 10.1038/s41598-018-34733-9

Related Stories

New gravity dataset will help unveil the Antarctic continent

January 22, 2016

More than 50 scientists from research institutions in eight countries, among others Germany, UK, USA and Russia have been actively collaborating since 2003 to make this gravity data compilation possible, coordinated by Mirko ...

Gravity glasses offer a view of the Earth's interior

March 14, 2016

How does the ice on the polar caps change? And which are the geological characteristics of the Earth's crust beneath? What is the structure of the boundary between the Earth's crust and mantle? Geophysicists will be able ...

Magnetic oceans and electric Earth

October 4, 2016

Oceans might not be thought of as magnetic, but they make a tiny contribution to our planet's protective magnetic shield. Remarkably, ESA's Swarm satellites have not only measured this extremely faint field, but have also ...

New timeline proposed for plate tectonics

May 11, 2017

Earth's history should include 'pre-plate tectonic' and 'plate tectonic' phases beginning less than a billion years ago, according to a team of geoscientists in the journal Geology.

New magnetic anomaly map helps unveil Antarctica

July 17, 2018

The most comprehensive magnetic map of Antarctica ever produced is published this week (15 July 2018). The new map – which includes 3.5 million line-kilometres of magnetic anomaly data collected over the past 50 years – ...

Is old rock really as 'solid as a rock'?

September 8, 2015

In the course of billions of years continents break up, drift apart, and are pushed back together again. The cores of continents are, however, geologically extremely stable and have survived up to 3.8 billions of years. These ...

Recommended for you

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.