New gravity dataset will help unveil the Antarctic continent

January 22, 2016

More than 50 scientists from research institutions in eight countries, among others Germany, UK, USA and Russia have been actively collaborating since 2003 to make this gravity data compilation possible, coordinated by Mirko Scheinert of Technische Universität Dresden, Germany.

Gravity anomalies are based on highly accurate measurements of the Earth's and are used in geodesy and geophysics to determine for example height measurements with respect to mean global sea level (geoid) and as a tool to probe deep into the Earth's interior. Detailed measurements have been collected over most of the globe augmented by recent satellite-derived missions. However, performing terrestrial measurements has proven significantly more challenging in Antarctica due its extension, remoteness and thick ice sheet cover.

Over the last decade, in particular, the international research community has deployed aircrafts equipped with gravity meters to collect a huge amount of new gravity data over Antarctica. The latest gravity anomaly dataset is based on 13 million data points and covers an area of 10 million km2, corresponding to 73% of the Antarctic continent (equal to the entire area of Europe).

Using these Antarctic gravity datasets new global models of Earth's gravity field with a resolution of up to 10 km can be constructed said Mirko Scheinert. Before we put together all the available terrestrial Antarctic gravity data we had to rely mainly on lower resolution (ca 100 km) satellite observations to construct such models.

Fausto Ferraccioli from the British Antarctic Survey and a co-author of the study said: "what is exciting for me is that these data provide geoscientists with a new tool to investigate the deep structure of the least understood continent on Earth and study how subglacial geology and tectonic structures can influence the topography hidden beneath the Antarctic ice sheets. Gravity data, for example, can help us study the extent of subglacial sedimentary basins in both West and East Antarctica and estimate geothermal heat flux, which in turn can influence ice sheet dynamics".

Overall, the new dataset of gravity anomalies will therefore help improve our knowledge of the state and evolution of the Antarctic continent further underpinning current research to better understand Antarctica's role in climate change and rise.

Explore further: World's largest canyon could be hidden under Antarctic ice sheet

More information: M. Scheinert et al. New Antarctic Gravity Anomaly Grid for Enhanced Geodetic and Geophysical Studies in Antarctica, Geophysical Research Letters (2016). DOI: 10.1002/2015GL067439

Related Stories

GOCE reveals gravity dip from ice loss (w/ Video)

September 26, 2014

Although not designed to map changes in Earth's gravity over time, ESA's extraordinary satellite has shown that the ice lost from West Antarctica over the last few years has left its signature.

New seafloor map helps scientists find new features

January 14, 2016

An international scientific team recently published a new map of the ocean floor based on Earth's gravity field, and it is a particularly useful tool. Such seafloor maps can aid submariners and ship captains with navigation, ...

Geophysics could slow Antarctic ice retreat

November 10, 2015

The anticipated melting of the massive West Antarctic Ice Sheet could be slowed by two big factors that are largely overlooked in current computer models, according to a new study.

Recommended for you

Tracking Antarctic adaptations in diatoms

January 16, 2017

Diatoms are a common type of photosynthetic microorganism, found in many environments from marine to soil; in the oceans, they are responsible for more than a third of the global ocean carbon captured during photosynthesis. ...

Study tracks 'memory' of soil moisture

January 16, 2017

The top 2 inches of topsoil on all of Earth's landmasses contains an infinitesimal fraction of the planet's water—less than one-thousandth of a percent. Yet because of its position at the interface between the land and ...

How the darkness and the cold killed the dinosaurs

January 16, 2017

66 million years ago, the sudden extinction of the dinosaurs started the ascent of the mammals, ultimately resulting in humankind's reign on Earth. Climate scientists have now reconstructed how tiny droplets of sulfuric acid ...

Soil pores, carbon stores, and breathing microbes

January 16, 2017

Researchers at the Pacific Northwest National Laboratory (PNNL) recently studied how moisture influences soil heterotrophic respiration. That's the breathing-like process by which microbes convert dead organic carbon in the ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.