The rich variety in the meteorological phenomena at Jupiter's Great Red Spot revealed

November 6, 2018, University of the Basque Country
Credit: NASA

A study conducted by an international team of researchers led by Agustín Sánchez-Lavega, professor of Physics at the UPV/EHU, reveals the existence of a rich diversity in the atmospheric phenomena confined inside Jupiter's spot as a result of the intense hurricane winds blowing around its periphery at speeds of about 450 km/hour.

The results are published in the Astronomical Journal. Jupiter's Great Red Spot, a long-lived, oval-shaped whirlwind measuring 20,000 km, is perhaps one of the most popular in the solar system; according to this study, it contains cumulus clouds of clustered storms produced by the condensation of ammonia vapour, narrow gravity waves similar to those that form on the Earth when the wind blows on mountain summits. Yet calm reigns at its centre where the clouds move by rotating in the opposite direction at maximum speeds of only 25 km/hour.

"These phenomena are confined to a thin layer only 50 km thick, which represents the roof of the clouds of the spot, while inside, the spot probably goes down to a depth of a couple of hundred kilometres," say the researchers. They used the images taken by the JunoCam during its close flyby across the Great Red Spot. These and other aspects of this phenomenon are the focus of the research that the Juno mission will be conducting over the next few years.

The Great Red Spot, observed for the first time with certainty 150 years ago, shows up through the telescope owing to its reddish colour against the white, yellowish, ochre clouds contrasting with the rest of the planet. Despite the numerous studies conducted on the storm, its nature poses a huge challenge for planetary meteorologists.

NASA's Juno space mission, launched for the purpose of studying the deep atmosphere of Jupiter, the planet's interior and its complex magnetic field, went into orbit in July 2016. Among the scientific equipment it has on board is a camera called the JunoCam, designed to capture images of the planet for the public and for encouraging citizen participation in science. The first images sent back from the environs of Jupiter suggested the potential scientific use of the camera, as it showed details of the atmosphere down to seven kilometers per pixel, a resolution never achieved previously.

Additionally, in another study by the Planetary Sciences Group led by Richard Hueso, the group looked at the impacts of meteorites on the atmosphere of Jupiter detected over the last few years by amateur astronomers around the world. Between 2010 and 2017, five flashes of light lasting barely a second caused by objects of between five and 20 metres in size were captured. Calculations indicate that between 10 and 65 impacts by objects of this size may take place every year on Jupiter, even though it is tricky to spot them.

Explore further: Image: Crescent Jupiter with the Great Red Spot

More information: A. Sánchez-Lavega et al. The Rich Dynamics of Jupiter's Great Red Spot from JunoCam: Juno Images, The Astronomical Journal (2018). DOI: 10.3847/1538-3881/aada81

Related Stories

Image: Crescent Jupiter with the Great Red Spot

January 16, 2017

This image of a crescent Jupiter and the iconic Great Red Spot was created by a citizen scientist (Roman Tkachenko) using data from Juno's JunoCam instrument. You can also see a series of storms shaped like white ovals, known ...

Juno spacecraft spots Jupiter's Great Red Spot

July 13, 2017

Images of Jupiter's Great Red Spot reveal a tangle of dark, veinous clouds weaving their way through a massive crimson oval. The JunoCam imager aboard NASA's Juno mission snapped pics of the most iconic feature of the solar ...

NASA's Juno mission detects Jupiter wave trains

October 24, 2018

Massive structures of moving air that appear like waves in Jupiter's atmosphere were first detected by NASA's Voyager missions during their flybys of the gas-giant world in 1979. The JunoCam camera aboard NASA's Juno mission ...

Recommended for you

Cellular microRNA detection with miRacles

March 26, 2019

MicroRNAs (miRNAs) are short noncoding regulatory RNAs that can repress gene expression post-transcriptionally and are therefore increasingly used as biomarkers of disease. Detecting miRNAs can be arduous and expensive as ...

What happened before the Big Bang?

March 26, 2019

A team of scientists has proposed a powerful new test for inflation, the theory that the universe dramatically expanded in size in a fleeting fraction of a second right after the Big Bang. Their goal is to give insight into ...

Probiotic bacteria evolve inside mice's GI tracts

March 26, 2019

Probiotics—which are living bacteria taken to promote digestive health—can evolve once inside the body and have the potential to become less effective and sometimes even harmful, according to a new study from Washington ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.