Experiments with optical tweezers race to test the laws of quantum mechanics

November 7, 2018 by Mishkat Bhattacharya And Nick Vamivakas, The Conversation
A silica sphere with a radius of 50 nanometers is trapped levitating in a beam of light. Credit: J. Adam Fenster, University of Rochester, CC BY-SA

One might think that the optical tweezer – a focused laser beam that can trap small particles – is old hat by now. After all, the tweezer was invented by Arthur Ashkin in 1970. And he received the Nobel Prize for it this year—presumably after its main implications had been realized during the last half-century.

Amazingly, this is far from true. The optical tweezer is revealing new capabilities while helping scientists understand , the theory that explains nature in terms of subatomic particles.

This theory has led to some weird and counterintuitive conclusions. One of them is that mechanics allows for a single object to exist in two different of reality at the same time. For example, allows a body to be at two different locations in space simultaneously – or both dead and alive, as in the famous thought experiment of Schrödinger's cat.

The technical name for this phenomenon is superposition. Superpositions have been observed for tiny objects like single atoms. But clearly, we never see a superposition in our everyday lives. For example, we do not see a cup of coffee in two locations at the same time.

To explain this observation, theoretical physicists have suggested that for large objects – even for nanoparticles containing about a billion atoms –superpositions collapse quickly to one or the other of the two possibilities, due to a breakdown of standard quantum mechanics. For larger objects the rate of collapse is faster. For Schrodinger's cat, this collapse – to "alive" or "dead" – would be practically instantaneous, explaining why we never see the superposition of a cat being in two states at once.

Until recently, these "collapse theories," which would require modifications of textbook quantum mechanics, could not be tested, as it is difficult to prepare a large object in a superposition. This is because larger objects interact more with their surroundings than atoms or subatomic particles – which leads to leaks in heat that destroys quantum states.

As physicists, we are interested in collapse theories because we would like to understand quantum physics better, and specifically because there are theoretical indications that the collapse could be due to gravitational effects. A connection between quantum physics and gravity would be exciting to find, since all of physics rests on these two theories, and their unified description – the so-called Theory of Everything – is one of the grand goals of modern science.

Enter the optical tweezer

Optical tweezers exploit the fact that light can exert pressure on matter. Although the radiation pressure from even an intense laser beam is quite small, Ashkin was the first person to show that it was large enough to support a nanoparticle, countering gravity, effectively levitating it.

In 2010 a group of researchers realized that such a nanoparticle held by an optic tweezer was well-isolated from its environment, since it was not in contact with any material support. Following these ideas, several groups suggested ways to create and observe superpositions of a nanoparticle at two distinct spatial locations.

An intriguing scheme proposed by the groups of Tongcang Li and Lu Ming Duan in 2013 involved a nanodiamond crystal in a tweezer. The nanoparticle does not sit still within the tweezer. Rather, it oscillates like a pendulum between two locations, with the restoring force coming from the radiation pressure due to the laser. Further, this diamond nanocrystal contains a contaminating , which can be thought of as a tiny magnet, with a north (N) pole and a south (S) pole.

The Li-Duan strategy consisted of three steps. First, they proposed cooling the motion of the nanoparticle to its quantum ground state. This is the lowest energy state this type of particle can have. We might expect that in this state the particle stops moving around and does not oscillate at all. However, if that happened, we would know where the particle was (at the center of the tweezer), as well how fast it was moving (not at all). But simultaneous perfect knowledge of both position and speed is not allowed by the famous Heisenberg uncertainty principle of quantum physics. Thus, even in its lowest energy state, the particle moves around a little bit, just enough to satisfy the laws of quantum mechanics.

Second, the Li and Duan scheme required the magnetic nitrogen atom to be prepared in a superposition of its north pole pointing up as well as down.

Finally, a was needed to link the nitrogen atom to the motion of the levitated diamond crystal. This would transfer the magnetic superposition of the atom to the location superposition of the nanocrystal. This transfer is enabled by the fact that the atom and the nanoparticle are entangled by the magnetic field. It occurs in the same way that the superposition of the decayed and not-decayed radioactive sample is converted to the of Schrodinger's cat in dead and alive states.

Proving the collapse theory

What gave this theoretical work teeth were two exciting experimental developments. Already in 2012 the groups of Lukas Novotny and Romain Quidant showed that it was possible to cool an optically levitated nanoparticle to a hundredth of a degree above absolute zero – the lowest temperature theoretically possible – by modulating the intensity of the optical tweezer. The effect was the same as that of slowing a child on a swing by pushing at the right times.

In 2016 the same researchers were able to cool to a ten-thousandth of a degree above absolute zero. Around this time our groups published a paper establishing that the temperature required for reaching the quantum ground state of a tweezed nanoparticle was around a millionth of a degree above . This requirement is challenging, but within reach of ongoing experiments.

The second exciting development was the experimental levitation of a nitrogen-defect-carrying nanodiamond in 2014 in Nick Vamivakas's group. Using a magnetic field, they were also able to achieve the physical coupling of the nitrogen atom and the crystal motion required by the third step of the Li-Duan scheme.

The race is now on to reach the ground state so that – according to the Li-Duan plan – an object at two locations can be observed collapsing into a single entity. If the superpositions are destroyed at the rate predicted by the collapse theories, quantum mechanics as we know it will have to be revised.

Explore further: How Einstein's equivalence principle extends to the quantum world

Related Stories

How hot is Schrodinger's coffee?

August 14, 2018

A new uncertainty relation, linking the precision with which temperature can be measured and quantum mechanics, has been discovered at the University of Exeter.

A new kind of quantum computer

November 6, 2017

Quantum mechanics incorporates some very non-intuitive properties of matter. Quantum superposition, for example, allows an atom to be simultaneously in two different states with its spin axis pointed both up and down, or ...

Experimental method measures robustness of quantum coherence

July 27, 2017

Researchers at the UAB have come up with a method to measure the strength of the superposition coherence in any given quantum state. The method, published in the journal Proceedings of the Royal Society A, is based on the ...

Turning ions into quantum cats

September 29, 2017

In Schrödinger's famous thought experiment, a cat seems to be both dead and alive—an idea that strains credulity. These days, cats still don't act this way, but physicists now regularly create analogues of Schrödinger's ...

Atoms can be in two places at the same time

January 20, 2015

Can a penalty kick simultaneously score a goal and miss? For very small objects, at least, this is possible: according to the predictions of quantum mechanics, microscopic objects can take different paths at the same time.  ...

Recommended for you

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...

Trembling aspen leaves could save future Mars rovers

March 18, 2019

Researchers at the University of Warwick have been inspired by the unique movement of trembling aspen leaves, to devise an energy harvesting mechanism that could power weather sensors in hostile environments and could even ...

Quantum sensing method measures minuscule magnetic fields

March 15, 2019

A new way of measuring atomic-scale magnetic fields with great precision, not only up and down but sideways as well, has been developed by researchers at MIT. The new tool could be useful in applications as diverse as mapping ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.