Flying focus: Controlling lasers through time and space

November 5, 2018, American Physical Society
A chirp-pulse laser (laser with colors organized in time) striking a diffractive lens (a lens that distributes colors along its axis) generates a flying focus, which is captured by an ultrafast movie. Credit: Eugene Kowaluk (University of Rochester)

Scientists have produced an extremely bright spot of light that can travel at any speed—including faster than the speed of light. Researchers have found a way to use this concept, called "flying focus," to move an intense laser focal point over long distances at any speed. Their technique includes capturing some of the fastest movies ever recorded.

A "flying focus" combines a lens that focuses specific colors of at different locations with the recent Nobel Prize winning chirped-pulse amplification technology, which organizes the colors of light in time. Imagine a producing a continuously changing rainbow of colors that start with blue and end with red. Now focus the light with a lens that concentrates the red light close to the lens and blue light much farther from the lens. Because of the time delay between the colors, the high-intensity moves. By changing the separating the different colors, this spot can be made to move at any .

"The flying focus turns out to be super powerful," said Dustin Froula, the Plasma Physics Group Leader at the University of Rochester's Laboratory for Laser Energetics. "It allows us to generate high intensities over hundreds of times the distance than we could before and at any speed. We're now trying to make the next generation of high-powered lasers and flying focus could be that enabling technology." His team, supported by the Department of Energy Office of Fusion Energy Sciences, will be presenting this research at the upcoming American Physical Society's Division of Plasma Physics meeting in Portland, Ore.

"Our group set out to design an experiment that would measure the propagation of a focal spot at any velocity, including 50 times the speed of light. This required a new diagnostic that could make a movie with frames separated by a trillionth of a second," Froula said.

In addition to helping usher in the next generation of high-power lasers, this research has the potential to produce novel light sources such as those that generate light of nearly any color.

Explore further: Researchers use 'flying focus' to better control lasers over long distances

Related Stories

Recommended for you

Terahertz laser pulses amplify optical phonons in solids

November 15, 2018

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg/Germany presents evidence of the amplification of optical phonons ...

Bursting bubbles launch bacteria from water to air

November 15, 2018

Wherever there's water, there's bound to be bubbles floating at the surface. From standing puddles, lakes, and streams, to swimming pools, hot tubs, public fountains, and toilets, bubbles are ubiquitous, indoors and out.

Designer emulsions

November 15, 2018

ETH material researchers are developing a method with which they can coat droplets with controlled interfacial composition and coverage on demand in an emulsion in order to stabilise them. In doing so they are fulfilling ...

Quantum science turns social

November 15, 2018

Researchers in a lab at Aarhus University have developed a versatile remote gaming interface that allowed external experts as well as hundreds of citizen scientists all over the world to optimize a quantum gas experiment ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.