How do flying bees make perfect turns?

November 21, 2018, University of Queensland
Credit: CC0 Public Domain

If you've ever lost your balance standing on a bus that takes a sharp turn at speed or felt your car skid when you drive around a corner too fast, you've experienced the effects of centrifugal force. Turning while simultaneously moving forwards creates a force that pulls the turning object away from the direction of the turn. The faster you're going and the sharper the turn, the more centrifugal force you experience, and the more likely you are to lose control.

This is why we and other animals tend to slow down when we approach a turn. Scientists have observed this behaviour in a few animals; however, Professor Mandyam Srinivasan's lab is the first to mathematically analyse the relationship between speed, curvature, and centrifugal in this phenomenon.

Bees maintain constant centrifugal force while turning

The study by Ph.D. student Mr Mahadeeswara Mandiyam and Professor Srinivasan at the Queensland Brain Institute, UQ, used a high-speed-multi-camera system to capture video footage of bees loitering outside their hive when the entrance was temporarily blocked, creating a 'bee cloud' outside the hive.

This type of semi-outdoor, 'bee cloud' experiment is the first of its kind, and is significantly closer to reality than previous experiments used for studying collision avoidance behaviour in bees.

The high speed videos were analysed mathematically to study the flight behaviour of bees in the cloud.

Professor Srinivasan and Mr Mandiyam hoped to better understand the complex manoeuvre of maintaining a desired flight trajectory while turning without disruption from centrifugal force.

The bees' speed, acceleration, and sharpness of turn were all computed using vector calculus to investigate how bees maintain control while turning.

The scientists found that bees' speed decreases when entering a turn, and increases when exiting. This mathematically confirms observations of turning behaviour of other animals such as fruit flies, bats, and horses.

Significantly, bees were able to maintain a largely constant centripetal acceleration while turning, regardless of how sharp the turns were or how fast the bees were travelling, which minimised the effects of centrifugal force on their flight path. Centripetal force pulls an object towards the centre of the turn, while centrifugal force pushes it away from the centre.

Bees adjust their speed to keep turning forces constant, new research from the Queensland Brain Institute, UQ shows. The findings can be applied to robots and autonomous vehicles. Credit: The University of Queensland
Bees slow their speed to keep forces constant

The researchers hypothesised this constant centripetal acceleration was the result of active efforts by the bees to reduce 'sideslips', or the loss of control caused by excess centrifugal force (like when a bus turns too quickly and you fall over) by managing their speed.

"When a bee is making a turn, it cleverly reduces its in an appropriate way so that the centrifugal force that it experiences is always constant," Mr Mandiyam said.

"The sharper a turn is and the faster the bee is going, the greater the centrifugal force that the bee will experience; the bee deals with this problem by slowing down when it makes sharper turns," he said.

Interestingly, the bees showed no preference for left or right turns, which can be an important aspect of collision avoidance in animals.

The researchers also found that bees held about the same amount of acceleration during both loitering turns and close encounters with other bees, meaning the bees' turning dynamics were the same, regardless of the context.

The researchers are now exploring the sensory information used to guide collision avoidance manoeuvres during these close-encounter turns.

Towards creating better flight control

Bee flight patterns have long been of interest to Professor Srinivasan and his lab. They hope to use a greater understanding of bee flight behaviour to incorporate in aerial robots and with advanced control and navigational abilities.

"Our main goal is to see how bees avoid collisions, which is the central aim of my Ph.D.," Mr Mandiyam said.

"This understanding can be used in robotics, and also applies to aircraft, as well as ground vehicles.

"If the vehicle needs to negotiate a sharp turn, it has to do so in such a way that the centrifugal force is within certain manageable limits, otherwise it can shoot off in what's called a sideslip."

"We can apply our knowledge of how perform coordinated turns to these situations to avoid sideslips in aerial and ground vehicles."

The paper was published in Scientific Reports.

Explore further: Learning about the birds and the bees helps aid flight

More information: Mandiyam Y. Mahadeeswara et al, Coordinated Turning Behaviour of Loitering Honeybees, Scientific Reports (2018). DOI: 10.1038/s41598-018-35307-5

Related Stories

Teaching drones about the birds and the bees

July 4, 2016

Unmanned Aerial Vehicles (UAVs) of the future will be able to visually coordinate their flight and navigation just like birds and flying insects do, without needing human input, radar or even GPS satellite navigation.

Inside the brains of killer bees

June 6, 2018

Africanized honeybees, commonly known as "killer bees," are much more aggressive than their European counterparts. Now researchers have examined neuropeptide changes that take place in Africanized honeybees' brains during ...

Recommended for you

Engineering cellular function without living cells

March 25, 2019

Genes in living cells are activated – or not – by proteins called transcription factors. The mechanisms by which these proteins activate certain genes and deactivate others play a fundamental role in many biological processes. ...

What ionized the universe?

March 25, 2019

The sparsely distributed hot gas that exists in the space between galaxies, the intergalactic medium, is ionized. The question is, how? Astronomers know that once the early universe expanded and cooled enough, hydrogen (its ...

Catalyst advance removes pollutants at low temperatures

March 25, 2019

Researchers at Washington State University, University of New Mexico, Eindhoven University of Technology, and Pacific Northwest National Laboratory have developed a catalyst that can both withstand high temperatures and convert ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.