Astronomers discover giant relic of disrupted Tadpole galaxy

November 19, 2018, Royal Astronomical Society
The core of Hickson's Compact Group 98 consists of the two "smudges" at the centre of the image. Each is a galaxy much like our own Milky Way. The point between them is a foreground star as are other circular features in the image. The tadpole structure covers the central galaxy pair and was formed when the pair demolished a much smaller galaxy. The image was processed from the collection of the Stripe 82 project of the Instituto de Astrofisica de Canarias. Credit: N. Brosch / Tel Aviv University

A team of astronomers from Israel, the U.S. and Russia have identified a disrupted galaxy resembling a giant tadpole, complete with an elliptical head and a long, straight tail, about 300 million light years away from Earth. The galaxy is one million light-years long from end to end, ten times larger than the Milky Way. The research is published today in the journal Monthly Notices of the Royal Astronomical Society.

"We have found a giant, exceptional relic of a disrupted galaxy," says Dr Noah Brosch, of The Florence and George Wise Observatory at Tel Aviv University's School of Physics and Astronomy, who led the research for the study.

When are disrupted and disappear, their stars are either incorporated into more massive galaxies or are ejected into intergalactic space. "What makes this object extraordinary is that the tail alone is almost 500,000 long," says Prof. R. Michael Rich of the University of California, Los Angeles. "If it were at the distance of the Andromeda galaxy, which is about 2.5 million light years from Earth, it would reach a fifth of the way to our own Milky Way."

Drs Brosch and Rich collaborated on the study with Dr Alexandr Mosenkov of St. Petersburg University and Dr Shuki Koriski of TAU's Florence and George Wise Observatory and School of Physics and Astronomy.

According to the study, the giant "tadpole" was produced by the disruption of a small, previously invisible dwarf galaxy containing mostly stars. When the of two visible galaxies pulled on stars in this vulnerable galaxy, the stars closer to the pair formed the "head" of the tadpole. Stars lingering in the victim galaxy formed the "tail."

"The extragalactic tadpole contains a system of two very close 'normal' disc galaxies, each about 40,000 light-years across," says Dr Brosch. "Together with other nearby galaxies, the galaxies form a compact group." The galaxy is part of a small group of galaxies called HCG098 that will merge into a single galaxy in the next billion years.

Such compact galaxy groups were first identified in 1982 by astronomer Paul Hickson, who published a catalogue of 100 such groups. The Hickson Compact Groups examine environments with high galaxy densities that are not at the core of a "cluster" of galaxies (clusters contain thousands of galaxies themselves). The "tadpole galaxy" is listed as No. 98 in the Hickson Compact Group catalogue.

"In compact group environments, we believe we can study 'clean' examples of galaxy-galaxy interactions, learn how matter is transferred between the members, and how newly accreted matter can modify and influence galaxy growth and development," says Dr Brosch.

For the research, the scientists collected dozens of images of the targets, each exposed through a wide filter that selects red light while virtually eliminating extraneous light pollution. "We used a relatively small, 70-cm telescope at the Wise Observatory and an identical telescope in California, both of which were equipped with state-of-the-art CCD cameras," says Dr Brosch. The two telescopes are collaborating on a project called the Halos and Environments of Nearby Galaxies (HERON) Survey.

The new study is part of a long-term project at TAU's Florence and George Wise Observatory, which explores the skies at low light levels to detect the faintest details of studied galaxies.

Explore further: Four newly discovered Milky Way neighbors

More information: Noah Brosch et al. Hickson Compact Group 98: a Complex Merging Group with a Giant Tidal Tail and a Humongous Envelope, Monthly Notices of the Royal Astronomical Society (2018). DOI: 10.1093/mnras/sty2717

Related Stories

Four newly discovered Milky Way neighbors

October 1, 2018

Ultra-faint dwarf galaxies are the smallest, most dark matter dominated, and least chemically enriched stellar systems in the universe, and are important targets for understanding dark matter and galaxy formation. They comprise ...

The Milky Way's long-lost sibling finally found

July 23, 2018

Scientists at the University of Michigan have deduced that the Andromeda galaxy, our closest large galactic neighbor, shredded and cannibalized a massive galaxy two billion years ago.

Image: Hubble catches galaxies swarmed by star clusters

October 2, 2017

In the center of a rich cluster of galaxies located in the direction of the constellation of Coma Berenices, lies a galaxy surrounded by a swarm of star clusters. NGC 4874 is a giant elliptical galaxy, about ten times larger ...

Image: Hubble's compact galaxy with big-time star formation

October 16, 2017

As far as galaxies are concerned, size can be deceptive. Some of the largest galaxies in the Universe are dormant, while some dwarf galaxies, such as ESO 553-46 imaged here by the NASA/ESA Hubble Space Telescope, can produce ...

Hubble catches a galaxy duo by the 'hare'

May 12, 2017

This image from the NASA/ESA Hubble Space Telescope shows the unusual galaxy IRAS 06076-2139, found in the constellation Lepus (The Hare). Hubble's Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACS) instruments ...

Image: Dwarf galaxy Kiso 5639

January 3, 2018

In this NASA/ESA Hubble Space Telescope image, a firestorm of star birth is lighting up one end of the dwarf galaxy Kiso 5639.

Recommended for you

NASA's Voyager 2 probe enters interstellar space

December 10, 2018

For the second time in history, a human-made object has reached the space between the stars. NASA's Voyager 2 probe now has exited the heliosphere – the protective bubble of particles and magnetic fields created by the ...

Team finds evidence for carbon-rich surface on Ceres

December 10, 2018

A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA's Dawn spacecraft indicate that Ceres's surface may contain several times the concentration ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.