How antibiotics spread resistance

November 28, 2018, University of Groningen
How antibiotics help spread resistance
As Streptococcus pneumoniae cells divide, they normally form mother-and-daughter pairs (left panel). But in response to antimicrobial drugs like aztreonam and clavulanic acid, they start forming longer chains, as the cell division mechanism is affected by the drugs (right panel). Credit: Jelle Slager, University of Groningen

Bacteria can become insensitive to antibiotics by picking up resistance genes from the environment. Unfortunately for patients, the stress response induced by antibiotics activates competence in microorganisms, the ability to take up and integrate foreign DNA. Microbiologists from the University of Groningen (UG) and the University of Lausanne have now described a new mechanism by which Streptococcus pneumoniae can become competent, and why biofilms may be important in this process. Their results were published in Cell Reports on November 27.

UG Ph.D. student Jelle Slager first described the mechanism of competence four years ago. Subsequently, his colleague Arnau Domenech, a team member from the Veening lab at the University of Lausanne, who is the first author of the Cell Reports paper, screened a large number of clinically relevant substances for their ability to induce competence. Two drugs stood out: aztreonam and clavulanic acid, which are both used to fight infections. "But when we looked closer, they didn't affect competence through a known mechanism," says Slager. "So we investigated what was going on."

Cell division

Competence is induced through the release of competence stimulating peptide (CSP). Cells secrete this peptide when they experience stress, for example, when they are challenged with certain antibiotics. Only when the CSP concentration around them reaches a certain threshold do the cells become competent. "This is a process called quorum sensing, which elicits a response once enough cells are affected." As CSP is secreted into the environment, all cells become competent at more or less the same time.

However, something different happened with the Streptococcus pneumoniae cells used in this study. Slager says, "As these cells divide, they normally form mother-and-daughter pairs. But in response to these two drugs, they start forming longer chains, as the cell division mechanism is affected by the drugs. When cells in these chains secrete CSP, the local concentration is higher than when pairs of cells swim freely in the medium. This means the local threshold for quorum sensing will be reached sooner for the cells in these chains.

Biofilm

Slager says, "Through this mechanism, groups of cells become competent at different times. So rather than a synchronized 'pulse' of competence in all the cells, which we normally see, we now have competent cells present for an extended period of time." An interesting aspect of this finding is that bacterial cells do not freely float in the body, as in these laboratory experiments, but are usually incorporated within a biofilm. Bacteria produce these biofilms by excreting sticky molecules, which provide them with protection against the immune system, for instance.

"In these biofilms, the cells are packed much more closely together, which means that competence is probably regulated by local quorum sensing, just like in our experiments," says Slager. "In fact, as was recently discovered, a gene that stimulates biofilm formation is activated together with other -induced genes." The first conclusion from this study is that standard in which free-swimming bacteria are grown in flasks full of culture medium are different from the clinical situation, in which they would grow in a . Furthermore, drugs that lead to chain formation, like aztreonam and clavulanic acid used in this study, will thereby increase the spread of antibiotic resistance genes.

Will this have any clinical implications? Not directly, says Slager. "This study primarily increases our fundamental knowledge about the spread of antibiotic resistance genes. And it tells us more about how communicate through . But maybe, in the long run, this knowledge could be used to disturb this communication and perhaps reduce the development of resistance."

Explore further: Researchers discover what pneumococcus says to make you sick

More information: Arnau Domenech et al, Antibiotic-Induced Cell Chaining Triggers Pneumococcal Competence by Reshaping Quorum Sensing to Autocrine-Like Signaling, Cell Reports (2018). DOI: 10.1016/j.celrep.2018.11.007

Related Stories

Researchers discover what pneumococcus says to make you sick

October 11, 2018

Carnegie Mellon University researchers have identified a molecule that plays a key role in bacterial communication and infection. Their findings add a new word to pneumococcus' molecular dictionary and may lead to novel ways ...

Researchers discover how fatal biofilms form

October 5, 2018

By severely curtailing the effects of antibiotics, the formation of organized communities of bacterial cells known as biofilms can be deadly during surgeries and in urinary tract infections. Yale researchers have just come ...

Scientists target bacterial transfer of resistance genes

October 24, 2012

The bacterium Streptococcus pneumoniae – which can cause pneumonia, meningitis, bacteremia and sepsis – likes to share its antibiotic-defeating weaponry with its neighbors. Individual cells can pass resistance genes to ...

Antibiotic resistance just became more complex

December 27, 2016

Bacteria that are susceptible to antibiotics can survive when enough resistant cells around them are expressing an antibiotic-deactivating factor. This new take on how the microbial context can compromise antibiotic therapy ...

New compound may stop bacteria from causing sickness

February 6, 2018

A study published in the Journal of Biological Chemistry is the first to describe a signaling pathway that affects communication—a process called quorum sensing—between Streptococcus bacteria cells.

Recommended for you

Scientists study genes misidentified as 'non-protein coding'

December 13, 2018

The human genome contains regions that "code" for proteins, which means they have instructions to make protein molecules with specific functions in the body. But Yale researchers have discovered several protein-coding genes ...

Rice plants that grow as clones from seed

December 12, 2018

Plant biologists at the University of California, Davis have discovered a way to make crop plants replicate through seeds as clones. The discovery, long sought by plant breeders and geneticists, could make it easier to propagate ...

Tiny tech tracks hummingbirds at urban feeders

December 12, 2018

Beep" is not a sound you expect to hear coming from a hummingbird feeder. Yet "beeps" abounded during a study led by the University of California, Davis to monitor hummingbirds around urban feeders and help answer questions ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

EyeNStein
not rated yet Nov 28, 2018
Their SoP of using single antibiotics in a serial fashion is part of the problem.
Serial treatment causes sequential addition of resistances.
Multi-drug treatment knocks down the bacterium while it is still trying to fight one drug at a time.
Even MRSA, which obviously has wide resistance against single antibiotics built in, is susceptible to multi-drug treatment:-
https://phys.org/...ons.html

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.