Breaking supersymmetry

October 2, 2018, Kanazawa University
The spectrum of the extended Nicolai model Credit: Kanazawa University

The remarkable discoveries and theories of physicists since the 1930s have shown that all matter in the universe is made from a small number of basic building blocks called fundamental particles. However, this isn't the complete story. Supersymmetry is a hypothesis in high-energy physics that aims to fill some of the gaps.

Hajime Moriya from the Institute of Science and Engineering at Kanazawa University has shown that for an extended version of a pioneering in non-relativistic supersymmetry-the Nicolai supersymmetric fermion lattice model-supersymmetry is broken for any nonzero value of a particular adjustable constant.

Supersymmetry predicts that two basic classes of , fermions and bosons, accompany each other in the same representation. Fermions, such as quarks, have a half a unit of spin, which is an intrinsic form of angular momentum, and bosons, such as photons, have zero, one, or two units of spin. In 1976, Hermann Nicolai proposed the fermion lattice model, which is made by fermions with no bosons, but supersymmetry is still satisfied.

Nicolai's original model was extended by Noriaki Sannomiya et al., who showed that for any nonzero adjustable constant g ∈ ℝ on finite systems, supersymmetry breaks down. However, in the infinite-volume limit, they verified that supersymmetry breaks down only when g > g0 ≔ 4/π. "This restriction on parameter g seems to be technical," says Moriya, "and its meaning in terms of physics is unclear."

The extended Nicolai model. Credit: Kanazawa University

So, Moriya considered spinless fermions over an infinitely extended lattice and removed the restriction on g in the case of the infinite-volume limit. Moriya showed that for any nonzero g, the extended Nicolai model breaks supersymmetry dynamically. In addition, the original Nicolai model has been shown to have highly degenerate vacua, also known as supersymmetric ground states. Moriya also proved that for any nonzero g, the energy density of any homogeneous ground state for the extended Nicolai model is strictly positive.

"Even if supersymmetry is broken for any finite subsystem, it may be restored in the infinite-volume limit," explains Moriya, "as exemplified by some supersymmetry quantum mechanical model." So, Moriya showed that such a restoration does not occur for the extended Nicolai model. "The breaking of is verified in a rather model-independent manner by applying C*-algebraic techniques, which seem not well known in physics community," adds Moriya.

Supersymmetric state. Credit: Kanazawa University

Explore further: One kind of supersymmetry shown to emerge naturally

More information: Hajime Moriya, Supersymmetry breakdown for an extended version of the Nicolai supersymmetric fermion lattice model, Physical Review D (2018). DOI: 10.1103/PhysRevD.98.015018

Related Stories

One kind of supersymmetry shown to emerge naturally

April 9, 2014

(Phys.org) —UC Santa Barbara physicist Tarun Grover has provided definitive mathematical evidence for supersymmetry in a condensed matter system. Sought after in the realm of subatomic particles by physicists for several ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Gravity waves could hold key to supersymmetry

November 5, 2008

(PhysOrg.com) -- "In Geneva," Anupam Mazumdar tells PhysOrg.com, "there is a big effort to discover supersymmetry particles at the Large Hadron Collider. But that is not the only way to find these particles. We should also ...

Physicists search for signs of supersymmetry

December 17, 2015

The first results from direct searches for new physics were announced today from CERN's energy-upgraded Large Hadron Collider (LHC). Among these results was a search for signs of a new theory called supersymmetry in which ...

Possible discovery in 2015 of a new particle in physics

February 15, 2015

The world's largest atom-smasher could help physicists understand mysterious dark matter in the universe, and later this year it may offer a discovery even more fascinating than the Higgs-Boson, researchers say.

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.