Terahertz spectroscopy enters the single-molecule regime

September 4, 2018, University of Tokyo
Illustration of a Single molecule transistor (SMT) with a bowtie antenna structure. S, D, and G denote the source, drain, and gate electrodes of the SMT, respectively. A single molecule is captured in the created nanogap. Credit: 2018 Kazuhiko Hirakawa, Institute of Industrial Science, The University of Tokyo

The interaction of light with matter is the basis of spectroscopy, a set of techniques lying at the heart of physics and chemistry. From infrared light to X-rays, a broad sweep of wavelengths is used to stimulate vibrations, electron transitions, and other processes, thus probing the world of atoms and molecules.

However, one lesser-used form of light is the terahertz (THz) region. Lying on the electromagnetic spectrum between infrared and microwaves, THz radiation does have the right frequency (around 1012 Hz) to excite molecular vibrations. Unfortunately, its long wavelength (hundreds of micrometers) is around 100,000 times a typical molecular size, making it impossible to focus THz beams onto a single molecule by conventional optics. Only large ensembles of can be studied.

Recently, a team led by The University of Tokyo's Institute of Industrial Science (IIS) found a way around this problem. In a study in Nature Photonics, they showed that THz radiation can indeed detect the motion of individual molecules, overcoming the classical diffraction limit for focusing light beams. In fact, the method was sensitive enough to measure the tunneling of a single electron.

The IIS team showcased a nanoscale design known as a single-molecule transistor. Two adjacent metal electrodes, the source and the drain of the transistor, are placed on a thin silicon wafer in a "bowtie" shape. Then, single molecules—in this case C60, aka fullerene—are deposited in the sub-nanometer gaps between the source and drain. The electrodes act as antennas to tightly focus the THz beam onto the isolated fullerenes.

"The fullerenes absorb the focused THz radiation, making them oscillate around their center-of-mass," explains study first-author Shaoqing Du. "The ultrafast molecular oscillation raises the electric current in the transistor, on top of its inherent conductivity." Although this current change is minuscule—on the order of femto-amps (fA)—it can be precisely measured with the same electrodes used to trap the molecules. In this way, two vibrational peaks at around 0.5 and 1 THz were plotted.

In fact, the measurement is sensitive enough to measure a slight splitting of the absorption peaks, caused by adding or subtracting only one electron. When C60 oscillates on a metal surface, its vibrational quantum (vibron) can be absorbed by an electron in the metal electrode. Thus stimulated, the electron tunnels into the C60 molecule. The resulting negatively charged C60- molecule vibrates at a slightly lower frequency than neutral C60, thus absorbing a different frequency of THz radiation.

Apart from providing a glimpse of tunneling, the study demonstrates a practical method to obtain electronic and vibronic information on molecules that only weakly absorb THz photons. This could open up the wider use of THz spectroscopy, an under-developed method that is complementary to visible-light and X-ray spectroscopy, and highly relevant to nanoelectronics and quantum computing.

Explore further: Phononic SEIRA—enhancing light-molecule interactions via crystal lattice vibrations

More information: Shaoqing Du et al, Terahertz dynamics of electron–vibron coupling in single molecules with tunable electrostatic potential, Nature Photonics (2018). DOI: 10.1038/s41566-018-0241-1

Related Stories

New molecular wires for single-molecule electronic devices

August 29, 2018

Scientists at Tokyo Institute of Technology designed a new type of molecular wire doped with organometallic ruthenium to achieve unprecedentedly higher conductance than earlier molecular wires. The origin of high conductance ...

Maintaining vibrational coherence with electron spin

June 26, 2018

Electron spin is an important property that determines processes such as chemical reactivity and the lifetime of the electron state. Spin is exploited in several applications such as luminescent materials, phototherapy, photochemistry, ...

Quantum effects in nanometer-scale metallic structures

October 22, 2014

Plasmonic devices combine the 'super speed' of optics with the 'super small' of microelectronics. These devices exhibit quantum effects and show promise as possible ultrafast circuit elements, but current material processing ...

Combing light for tell-tale chemical fingerprints

May 23, 2018

A laser-based technique that can scan and lock on to molecular vibrational signals that are normally too complex to resolve clearly could enable production of sensors for multi-species identification in harsh environments, ...

Vibrational motion of a single molecule measured in real time

August 20, 2014

For the first time, chemists have succeeded in measuring vibrational motion of a single molecule with a femtosecond time resolution. The study reveals how vibration of a single molecule differs from the behaviour of larger ...

Recommended for you

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...

Gravitational waves will settle cosmic conundrum

February 14, 2019

Measurements of gravitational waves from approximately 50 binary neutron stars over the next decade will definitively resolve an intense debate about how quickly our universe is expanding, according to findings from an international ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.