Expanding the limits of Li-ion batteries—electrodes for all-solid-state batteries

August 7, 2018, Tokyo Institute of Technology
The batteries were made by stacking various layers via thin-film deposition methods. The LNMO/Li3PO4 interface showed spontaneous migration of Li ions and had an unprecedentedly low resistance. Credit: ACS Applied Materials & Interfaces

Scientists at Tokyo Institute of Technology have addressed one of the major disadvantages of all-solid-state batteries by developing batteries with a low resistance at their electrode/solid electrolyte interface. The fabricated batteries showed excellent electrochemical properties that greatly surpass those of now ubiquitous Li-ion batteries, thereby demonstrating the promise of all-solid-state battery technology and its potential to revolutionize portable electronics.

Many consumers are familiar with rechargeable lithium ion batteries, which have developed over the last few decades, and are now common in all sorts of electronic devices. Despite their broad use, scientists and engineers believe that traditional Li-ion battery technology is already nearing its full potential and new types of batteries are needed.

All-solid-state batteries are a new type of Li-ion battery, and have been shown to be potentially safer and more stable energy storage devices with higher energy densities. However, the use of such batteries is limited due to a major disadvantage—their resistance at the electrode/solid electrolyte is too high, hindering fast charging and discharging.

Scientists from Tokyo Institute of Technology and Tohoku University, led by Professor Taro Hitosugi, fabricated all-solid-state batteries with extremely low interface resistance using Li(Ni0.5Mn1.5)O4 (LNMO), by fabricating and measuring their batteries under ultrahigh vacuum conditions, ensuring that the electrolyte/electrode interfaces were free of impurities.

The (a) charge-discharge curves and the (b) cycling performance plot show that the performance of the fabricated all-solid-state batteries did not degrade after repeated use, demonstrating their excellent stability and the total reversibility of the reactions involved in charging/discharging. Credit: ACS Applied and Materials & Interfaces

The structure of these all-solid-state batteries is shown in Figure 1. After fabrication, the electrochemical properties of these batteries were characterized to shed light on Li-ion distribution around the interface. X-ray diffraction and Raman spectroscopy were used for analyzing the crystal structure of the thin films comprising the batteries. Spontaneous migration of Li ions was found to occur from the Li3PO4 layer to the LNMO layer, converting half the LNMO to L2NMO at the Li3PO4/LNMO interface. The reverse migration occurs during the initial charging process to regenerate LNMO.

The resistance of this interface, verified using electrochemical impedance spectroscopy, was 7.6 Ω cm2, two orders of magnitude smaller than that of previous LNMO-based all-solid-state batteries, and even smaller than that of liquid-electrolyte-based Li-ion batteries using LNMO. These batteries also displayed fast charging and discharging, managing to charge/discharge half the battery within just one second. Moreover, the cyclability of the battery was also excellent, showing no degradation in performance even after 100 charge/discharge cycles (see Figure 2).

Li(Ni0.5Mn1.5)O4 is a promising material to increase the energy density of a , because the material provides a higher voltage. The research team hopes that these results will facilitate the development of high-performance all-solid-state batteries, which could revolutionize modern portable electronic devices and electric cars.

Explore further: Polymer professor develops safer component for lithium batteries

More information: Hideyuki Kawasoko et al, Extremely Low Resistance of Li3PO4 Electrolyte/Li(Ni0.5Mn1.5)O4 Electrode Interfaces, ACS Applied Materials & Interfaces (2018). DOI: 10.1021/acsami.8b08506

Related Stories

Charging ahead to higher energy batteries

February 26, 2018

Researchers have developed a new way to improve lithium ion battery efficiency. Through the growth of a cubic crystal layer, the scientists have created a thin, dense connecting layer between the electrodes of the battery. ...

Researchers design dendrite-free lithium battery

January 8, 2018

By designing a solid electrolyte that is rigid on one side and soft on the other, researchers have fabricated a lithium-metal battery that completely suppresses dendrite formation—a major safety hazard that can cause fires ...

Recommended for you

Nanodiamonds as photocatalysts

October 19, 2018

Climate change is in full swing and will continue unabated as long as CO2 emissions continue. One possible solution is to return CO2 to the energy cycle: CO2 could be processed with water into methanol, a fuel that can be ...

Producing defectless metal crystals of unprecedented size

October 19, 2018

A research group at the Center for Multidimensional Carbon Materials, within the Institute for Basic Science (IBS), has published an article in Science describing a new method to convert inexpensive polycrystalline metal ...

Shining light on the separation of rare earth metals

October 18, 2018

Inside smartphones and computer displays are metals known as the rare earths. Mining and purifying these metals involves waste- and energy-intense processes. Better processes are needed. Previous work has shown that specific ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.