Female mosquitoes get choosy quickly to offset invasions

August 16, 2018 by Mick Kulikowski, North Carolina State University
Martha Burford Reiskind and colleagues found rapid genetic changes in A. aegypti females facing invasion by cousin mosquitoes. Credit: Martha Burford Reiskind.

Certain female mosquitoes quickly evolve more selective mating behavior when faced with existential threats from other invasive mosquito species, with concurrent changes to certain genetic regions, according to new research from North Carolina State University. The findings shed light on the genetics behind insect mating behavior and could have implications for controlling mosquito pests that plague humans.

At issue is the displacement of Aedes aegypti (yellow fever) mosquitos by a cousin species, Aedes albopictus (Asian tiger), which occurred in the southeastern United States in the 1980s. In this "battle of the Aedes," the invading A. albopictus decimated A. aegypti populations throughout the Southeast, leaving smaller A. aegypti populations in Key West, Florida, Arizona and a few other southern locales. A. aegypti mosquitoes carry and spread many diseases that harm humans, including Zika, dengue fever and chikungunya.

Part of the takeover was attributed to how the larvae of each species grew; A. albopictus mosquitoes seemed to be able to outcompete the native mosquitoes. But another factor also played a huge role in the battle: When A. aegypti females mated with A. albopictus males—a genetic no-no—those females became sterile for life, a process called "satyrization." A. albopictus females didn't face the same fate; no offspring were produced when they mated with A. aegypti males, but they were later able to be fertile when mating with males of their own species.

Martha Burford Reiskind, research assistant professor in the Department of Applied Ecology at NC State and corresponding author of a paper describing the research, and colleagues wanted to understand more about how A. aegypti females respond to this type of threat and what happens in their genetic blueprint as their responses change.

The researchers found that A. aegypti females quickly—in just six generations—became more picky when selecting mates, eschewing A. albopictus males for males of their own species. This response occurred when A. aegypti females were exposed to cousin males in the lab and in the wild. Geographic location didn't seem to make a difference: The female mosquitoes in both Florida and Arizona exhibited similar genetic changes.

"We wanted to know what genes were involved in the evolution of this choosiness in female A. aegypti mosquitoes," Burford Reiskind said. "We can now look at certain gene regions and feel confident that they are involved in mating behavior."

Choosiness had its costs, though. Burford Reiskind said choosy female A. aegypti mosquitoes mated later in their brief lifespans—most live for two or three weeks—and were generally smaller.

"Invasive are often seen as better competitors for scant resources, but that doesn't seem to be the case for these mosquitoes," Burford Reiskind said. "This study suggests other mechanisms are at play."

Burford Reiskind hopes to continue learning more about the genes involved in mating behaviors by conducting a larger-scale study, perhaps in places where A. aegypti and A. albopictus live in relatively equal densities.

The research appears in Molecular Ecology.

Explore further: Sterilised mosquito trial slashes dengue-spreading population

More information: M O Burford Reiskind et al, Rapid evolution and the genomic consequences of selection against interspecific mating, Molecular Ecology (2018). DOI: 10.1111/mec.14821

Related Stories

Mosquito sex protein could provide key to controlling disease

December 13, 2017

If you thought the sex lives of humans were complicated, consider the case of the female Aedes aegypti mosquito, bringer of Zika, dengue, and yellow fever: She mates but once, in seconds and on the wing, with one lucky male; ...

Traces of Zika Found in Asian tiger mosquito in Brazil

April 14, 2017

In a recent test of Asian tiger mosquitoes collected in Brazil, researchers found fragments of Zika virus RNA, raising concerns that it may be carried by species other than Zika's known primary vector, the yellow fever mosquito.

Recommended for you

'Zebra' tribal bodypaint cuts fly bites 10-fold: study

January 16, 2019

Traditional white-striped bodypainting practiced by indigenous communities mimics zebra stripes to reduce the number of potentially harmful horsefly bites a person receives by up to 10-fold, according to new research published ...

Big genome found in tiny forest defoliator

January 15, 2019

The European gypsy moth (EGM) is perhaps the country's most famous invasive insect—a nonnative species accidentally introduced to North America in the 1860s when a few escaped from a breeding experiment in suburban Boston. ...

Why haven't cancer cells undergone genetic meltdowns?

January 15, 2019

Cancer first develops as a single cell going rogue, with mutations that trigger aggressive growth at all costs to the health of the organism. But if cancer cells were accumulating harmful mutations faster than they could ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.