Energy-efficient spin current can be controlled by magnetic field and temperature

August 17, 2018, Universitaet Mainz
Credit: CC0 Public Domain

The transition from light bulbs to LEDs has drastically cut the amount of electricity we use for lighting. Most of the electricity consumed by incandescent bulbs was, after all, dissipated as heat. We may now be on the verge of a comparable breakthrough in electronic computer components. Up to now, these have been run on electricity, generating unwanted heat. If spin current were employed instead, computers and similar devices could be operated in a much more energy-efficient manner. Dr. Olena Gomonay from Johannes Gutenberg University Mainz (JGU) in Germany and her team together with Professor Eiji Saitoh from the Advanced Institute for Materials Research (AIMR) at Tohoku University in Japan and his work group have now discovered an effect that could make such a transition to spin current a reality. This effect significantly simplifies the design of fundamental spintronic components.

Touching a that has been running for some time, you will feel heat. This heat is an undesirable side effect of the electric current. Undesirable because the heat generated, naturally, also consumes energy. We are all familiar with this effect from , which became so hot after being on for hours that they could burn your fingers. This is because light bulbs converted only a fraction of the energy required to do their job of creating light. The energy used by LEDs, on the other hand, is almost completely used for lighting, which is why they don't become hot. This makes LEDs significantly more energy-efficient than traditional .

Instead of using an electric current composed of charged particles, a computer using a stream of particles with a spin other than zero could manipulate the material of its components in the same way to perform calculations. The primary difference is that no heat is generated, the processes are much more energy-efficient. Dr. Olena Gomonay from Mainz University and Professor Eiji Saitoh from Tohoku University have now laid the foundations for using these . More precisely, they have used the concept of spin currents and applied it to a specific material. Gomonay compares the spin currents involved with how our brains work: "Our brains process immeasurable amounts of information, but they don't up in the process. Nature is, therefore, way ahead of us." The team from Mainz is hoping to emulate this model.

Drastic change in current flow

How well spin currents flow depends on the material—just like in the case of electric current. While spin currents can always flow in ferromagnetic materials, in antiferromagnetic materials states with low resistance alternate with those with high resistance. "We have now found a way to control spin currents by means of a magnetic field and , in other words, to control the resistance of an antiferromagnetic system based on spin," explained Gomonay, summarizing her results.

At a temperature close to the phase transition temperature, Gomonay and her team applied a small magnetic field to the material. While the applied magnetic field alters the orientation of the spin currents to allow them to be easily transported through the material, the temperature has precisely two effects. On the one hand, a higher temperature causes more particles of the material to be in excited states, meaning there are more spin carriers that can be transported, which makes spin transport easier. On the other hand, the high temperature makes it possible to operate at a low .

Thus, the resistance and the current flow change drastically by several orders of magnitude. "This effect, which we call spin colossal magnetoresistance or SCMR for short, has the potential to simplify the design of fundamental spintronic components significantly," explained the scientist from Mainz. This is particularly interesting for storage devices such as hard disks. This effect might be employed, for example, to create spin current switches as well as spin based storage media.

Explore further: A switch to control the spin current

More information: Zhiyong Qiu et al, Spin colossal magnetoresistance in an antiferromagnetic insulator, Nature Materials (2018). DOI: 10.1038/s41563-018-0087-4

Related Stories

A switch to control the spin current

May 29, 2018

Researchers at Tohoku University in Japan have discovered a switch to control the spin current, a mechanism needed for information processing with full spin-based devices.

Researchers put a new spin on cooling electronic hotspots

August 1, 2018

The longevity of electronic devices is tested in many ways as they endure the rigors of daily usage. Even when they are treated with the utmost care, they still have a major challenge to overcome – the removal of heat.

One-way roads for spin currents

May 23, 2018

Spin is a type of angular momentum intrinsic to particles, roughly speaking as if they were spinning on themselves. Particles can exchange their spin, and in this way spin currents can be formed in a material. Through years ...

Some superconductors can also carry currents of 'spin'

April 16, 2018

Researchers have shown that certain superconductors—materials that carry electrical current with zero resistance at very low temperatures—can also carry currents of 'spin'. The successful combination of superconductivity ...

Thermal spin currents confirmed in both space and time

June 4, 2018

Electrons possess their own angular momentum. They turn on their own axis. In physics, the technical term for this property is spin. Such an electron spin is what makes electrons behave as magnets. However, what is special ...

Spin currents switch at terahertz frequencies

July 5, 2017

The technology of spintronics is based on the intrinsic spin of electrons. In the medium term, it is set to replace electronics as the basis for technical devices. DESY scientist Lars Bocklage has discovered a new way of ...

Recommended for you

Correlated nucleons may solve 35-year-old mystery

February 20, 2019

A careful re-analysis of data taken at the Department of Energy's Thomas Jefferson National Accelerator Facility has revealed a possible link between correlated protons and neutrons in the nucleus and a 35-year-old mystery. ...

CMS gets first result using largest-ever LHC data sample

February 15, 2019

Just under three months after the final proton–proton collisions from the Large Hadron Collider (LHC)'s second run (Run 2), the CMS collaboration has submitted its first paper based on the full LHC dataset collected in ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.