The wetting characteristics of phosphorene could pave the way for new applications in biological engineering

August 30, 2018, Agency for Science, Technology and Research (A*STAR), Singapore
Credit: CC0 Public Domain

A technique for investigating the wetting behavior of water on phosphorene—the single layer form of black phosphorus—has been developed by A*STAR researchers seeking to better understand properties that could enable its commercial applications.

Phosphorene, unlike other commonly used 2-D materials, such as graphene and molybdenum disulfide, possesses structural anisotropy, in which it exhibits different physical properties along axes in different directions. This property could allow phosphorene with tunable wettability to be fabricated for use in the biological sciences. Yet until now, little was known about the wetting behavior of this material.

To realize the potential of phosphorene, however, requires a thorough understanding of how it interacts with biomolecules and fluids. This drove Chen Shuai, and colleagues from the A*STAR Institute of High Performance Computing to develop a technique for investigating the wetting characteristics of on phosphorene.

The researchers investigated the , a measure of the relative strength of the interaction between the phosphorene and the water droplets, which determines its wettability characteristics. Many properties of phosphorene, such as electronic band gap and atomic/molecular adsorption, are layer-dependent, so they also considered the wetting behavior on multilayer phosphorene.

To do this they first used to observe the effects of different droplet sizes and the number of phosphorene layers on the contact angle.

As phosphorene has strong structural anisotropy, they also explored the diffusion behavior of water droplets on phosphorene—both with and without defects—for their effect on contact angle.

"The contact angle of a water droplet on phosphorene is important for biological applications of phosphorene," explains Chen. "Because it is an intrinsic property, we investigated the effect of water droplet size, number of phosphorene layers, and defect distribution on the contact angle of both pristine and defective phosphorene."

"We found that the contact angle decreased when the number of phosphorene layers increased from one to three, but then converged to a constant value when the number of layers was larger than three," says Chen. "The results for defective phosphorene demonstrate that the contact angle along different directions increased with increasing defect concentration."

The work demonstrates that the wetting property of phosphorene is tunable with the number of layers and the defect distribution, which are critical for manipulating the water wetting and protein adsorption on phosphorene-based devices for use in biological and nanofluidic applications.

"Based on these results from our research, we now intend to explore the interaction of with biomolecules in a water environment," says Chen.

Explore further: Chemically stabilizing atomically flat materials improves their potential for commercial application

More information: Shuai Chen et al. Anisotropic Wetting Characteristics of Water Droplets on Phosphorene: Roles of Layer and Defect Engineering, The Journal of Physical Chemistry C (2018). DOI: 10.1021/acs.jpcc.7b10788

Related Stories

Understanding how flat phosphorus grows

September 9, 2016

The door to developing superior electronic devices, such as flexible circuits, has been nudged open by A*STAR researchers' modeling of possible methods to manufacture one of the crucial ingredients.

Zapping a new approach to solar cells

August 13, 2018

A simple and fast microwave experiment with the common chemical element phosphorus at Flinders University has opened the prospect of more affordable and effective super-thin solar cells.

Method stabilizes, enhances phosphorene

May 2, 2016

Two years ago, Northwestern University's Mark Hersam discovered a way to stabilize exfoliated black phosphorus—or phosphorene—a layered semiconductor that chemically degrades in open air but shows great promise for electronics. ...

Recommended for you

Solution for next generation nanochips comes out of thin air

November 19, 2018

Researchers at RMIT University have engineered a new type of transistor, the building block for all electronics. Instead of sending electrical currents through silicon, these transistors send electrons through narrow air ...

Scientists create atomic scale, 2-D electronic kagome lattice

November 19, 2018

Scientists from the University of Wollongong (UOW), working with colleagues at China's Beihang University, Nankai University, and Institute of Physics at Chinese Academy of Sciences, have successfully created an atomic scale, ...

Solving mazes with single-molecule DNA navigators

November 16, 2018

The field of intelligent nanorobotics is based on the great promise of molecular devices with information processing capabilities. In a new study that supports the trend of DNA-based information carriers, scientists have ...

A way to make batteries almost any shape desired

November 16, 2018

A team of researchers from Korea Advanced Institute of Science and Technology, Harvard University and Korea Research Institute of Chemical Technology has developed a way to make batteries in almost any shape that can be imagined. ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.