Chemically stabilizing atomically flat materials improves their potential for commercial application

October 5, 2017, Agency for Science, Technology and Research (A*STAR), Singapore
Chemically stabilizing atomically flat materials improves their potential for commercial application
The absorption of oxygen (red) damages phosphorene (purple, top), but the phosphorene is protected when on a molybdenum diselenide substrate (bottom). Credit: A*STAR Institute of High Performance Computing

Two-dimensional materials could underpin a novel family of flexible, low-power electronic devices, but their success depends on ensuring the layers are chemically stable. A*STAR researchers now show that one 2-D material, phosphorene, can be stabilized with the right choice of substrate and an electric field.

Graphene, a single layer of carbon atoms, deserves its reputation as a supermaterial; it's strong, hard, light, has excellent electronic and thermal properties. It is the archetypal 2-D material. More recently scientists have created single layers of other —tin, germanium, boron, silicon and phosphorus—with their own signature properties. For example, while graphene is a semi-metal without a band gap, phosphorene is a semiconductor like silicon, which makes it useful for electronic devices. However, phosphorene has a notorious drawback: the material oxidizes in air and its quality is rapidly degraded.

In search of a viable approach to overcome this, Junfeng Gao and colleagues from the A*STAR Institute of High Performance Computing use first-principles calculations to demonstrate that placing phosphorene on a molybdenum diselenide and applying a vertical electric field can drastically increase its resistance to .

"The interaction and charge transfer between substrate and phosphorene can be tuned by an external electric field, causing a change in surface activity and suppressing the oxidation of phosphorene," explains Gao.

Their study shows that the dominant process involved in the degradation of phosphorene in air is the absorption of oxygen. The fast oxidation of freestanding phosphorene in ambient conditions is due to a low energy barrier for oxygen absorption of about 0.57 electronvolts: oxidation can occur in less than a minute.

When this analysis is repeated with phosphorene overlying molybdenum diselenide, the energy barrier is much higher. As well, the model shows that the presence of the molybdenum diselenide substrate enables more effective tuning of the properties of the phosphorene with an electric field. This increases the oxidation even further. Under a suitable vertical , the barrier can increase to 0.91 electronvolts. This lifetime of the phosphorene against oxidation can be 105 times greater than that without treatment.

Gao's approach to achieve air-stable phosphorene may greatly promote its use in practical devices. "We will explore more substrates for their ability to stabilize phosphorene," says Gao. "In particular, we want to find out if such a substrate is suitable for epitaxial growth of ."

Explore further: Understanding how flat phosphorus grows

More information: Junfeng Gao et al. Vastly enhancing the chemical stability of phosphorene by employing an electric field, Nanoscale (2017). DOI: 10.1039/c7nr00894e

Related Stories

Understanding how flat phosphorus grows

September 9, 2016

The door to developing superior electronic devices, such as flexible circuits, has been nudged open by A*STAR researchers' modeling of possible methods to manufacture one of the crucial ingredients.

Method stabilizes, enhances phosphorene

May 2, 2016

Two years ago, Northwestern University's Mark Hersam discovered a way to stabilize exfoliated black phosphorus—or phosphorene—a layered semiconductor that chemically degrades in open air but shows great promise for electronics. ...

Exfoliating thinner flakes of phosphorene at higher yield

April 18, 2016

In the past two years, phosphorene has attracted increased attention due to its potential in thin, flexible electronics. And because it is naturally a semi-conductor, phosphorene holds promise where miracle material graphene ...

Recommended for you

New technology for diagnosing immunity to Ebola

January 15, 2018

A promising new approach to detect immunity to Ebola virus infection has been developed by researchers from i-sense in a collaboration between UCL and Imperial College London.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.