Simpler interferometer can fine tune even the quickest pulses of light

July 11, 2018, University of Rochester
A new device designed by optics professor Chunlei Guo and PhD student Billy Lam is a 'revolutionary step forward' for characterizing the properties of laser beams in a much more reliable and powerful way than traditional interferometers. Credit: J. Adam Fenster/University of Rochester

If you want to get the greatest benefit from a beam of light—whether to detect a distant planet or remedy an aberration in the human eye—you need to be able to measure its beam front information.

Now a University of Rochester research team has devised a much simpler way to measure beams of — even powerful, superfast pulsed laser beams that require very complicated devices to characterize their properties.

The new device will give scientists an unprecedented ability to fine tune even the quickest pulses of light for a host of applications, says Chunlei Guo, professor of optics, who has used pulsed laser beams to treat metal surfaces in remarkable ways. And it could render traditional instruments for measuring light beams obsolete.

"This is a revolutionary step forward," says Guo. "In the past we've had to characterize with very complicated, cumbersome interferometric devices, but now we can do it with just one optical cube. It is super compact, super reliable, and super robust."

The device, developed by Guo and Billy Lam, a Ph.D. student in his lab, is described in Nature Light: Science and Applications. Called a wedged reversal shearing interferometer, it consists of a prism cube, assembled from two right-angle prisms.

-The cube has two angled entrances and splits the into two parts.

When the beam exits the cube, the reflected light from the left portion of the beam and the transmitted light from the right portion of the beam are emitted from one face of the cube. Conversely, the transmitted light from left portion of the beam and reflected light from the right portion are emitted from another face of the cube.

This creates an extremely stable "Interference" pattern for Guo and his team to measure all the key spatial characteristics of a light beam- its amplitude, phase, polarization, wavelength, and, in the case of pulsed beams, the duration of the pulses. And not just as an average along the entire beam, but at each point of the beam.

This is especially important in imaging applications, Guo says. "If a beam is not perfect, and there is a defect on the image, it's important to know the defect is because of the beam, and not because of a variation in the object you are imaging," Guo says.

At left is the basic design of a traditional interferometer, and at right the more compact design of the interferometer created in the lab of optics professor Chunlei Guo. This new wedge reversal shearing interferometer has the added advantage of being able to measure the beam front information or wave front of powerful, superfast pulsed laser beams, Credit: University of Rochester illustration / Michael Osadciw

"Ideally, you should have a perfect beam to do imaging. And if you don't, you better know it, and then you can correct your measurements. Ultrafast lasers are key for recording dynamic processes, and having an extremely simple but robust device to characterize ultrafast or any type of laser beams are surely important."

Albert Michaelson demonstrated the first interferometer in the 1880s, using a and two mirrors. The core principles remain the same in interferometers used today.

The beam splitter sends the split light on different optical paths towards the mirrors. The mirrors then reflect each split beam back so they recombine at the beam splitter. The different paths taken by the two split beams causes a phase difference which creates an interference fringe pattern. This pattern is then analyzed by a detector to evaluate the wave characteristics.

This approach has worked reasonably well for characterizing continuous wave laser beams because they have a long "coherence" time, allowing them to interfere even after being split, sent along two paths of different lengths, and then recombined, Guo says.

However, given the short duration of a femtosecond pulsed laser beam—about a millionth of a billionth of a second—Simple interferometer like the shear plate, where the beams reflected from the front and back surface interfere, no longer works." Guo says. Femtosecond pulsed would quickly lose their coherence along non-equidistant pathways of a typical interferometer.

The prism cube is designed in such a way to eliminate that problem, he says. The prism cube is the first single element interferometer that can characterize femtosecond or even shorter laser pulses.

Femtosecond laser pulses offer two advantages. Their incredibly short duration is comparable to the timescales at which "very many fundamental processes in nature occur," Guo says. Those processes include an electron moving around an atom's core, the "lattice" vibration of atoms and molecules, and the unfolding of biological proteins. So, femtosecond last pulses provide researchers a tool to study and manipulate those processes.

Femtosecond laser pulses are also incredibly powerful. "The peak power of a in my laboratory is equivalent to the entire North American power grid," Guo says. That enables his lab to use the pulses to etch metal surfaces with new properties, so they become super water repellent or water attracting.

Explore further: Archimedes' screw inspires researchers to devise a novel particle-trapping laser beam

Related Stories

Using lasers to create ultra-short pulses

March 15, 2017

Physicists at Friedrich-Alexander Universität Erlangen-Nürnberg (FAU) have entered new territory with regard to the pulsing of electron beams. Their method could soon be used to develop electron microscopes suitable for ...

A laser focus on super water-repellent metals

February 26, 2018

In a laboratory at the University of Rochester, researchers are using lasers to change the surface of metals in incredible ways, such as making them super water-repellent without the use of special coatings, paints, or solvents.

Organic vortex lasers could be used in future 3-D displays

February 8, 2018

Researchers have developed a new type of organic vortex laser, which is a laser that emits a helical beam of light. In the future, miniature arrays of these vortex lasers, each with a slightly different spiral shape, may ...

Recommended for you

The hunt for leptoquarks is on

September 19, 2018

Matter is made of elementary particles, and the Standard Model of particle physics states that these particles occur in two families: leptons (such as electrons and neutrinos) and quarks (which make up protons and neutrons). ...

Fiber optic sensor measures tiny magnetic fields

September 19, 2018

Researchers have developed a light-based technique for measuring very weak magnetic fields, such as those produced when neurons fire in the brain. The inexpensive and compact sensors could offer an alternative to the magnetic ...

Researchers push the boundaries of optical microscopy

September 19, 2018

The field of optical microscopy research has developed rapidly in recent years. Thanks to the invention of a technique called super-resolution fluorescence microscopy, it has recently become possible to view even the smaller ...

Searching for errors in the quantum world

September 19, 2018

The theory of quantum mechanics is well supported by experiments. Now, however, a thought experiment by ETH physicists yields unexpected contradictions. These findings raise some fundamental questions—and they're polarising ...

Extremely small and fast: Laser ignites hot plasma

September 19, 2018

When light pulses from an extremely powerful laser system are fired onto material samples, the electric field of the light rips the electrons off the atomic nuclei. For fractions of a second, a plasma is created. The electrons ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.