PEF chal­lenges PET to bat­tle

July 26, 2018 by Anna Malt­sev, ETH Zurich
"Education and an improved awareness of how to handle plastics will continue to be crucial in order to stop the increasing environmental pollution", says ETH researcher Jan-Georg Rosenboom. Credit: iStock

PEF bioplastic could solve some of the problems caused by PET. The lengthy and energy-intensive production process has so far prevented mass production. ETH Zurich researchers have now developed a method that could finally make the PEF marketable.

The problem of is on everyone's lips. Every year, some 50 million tons of polyethylene terephthalate (PET) alone are produced, and the trend is rising. Since recycling is usually cost-intensive and technologically difficult to implement, a great deal of plastic waste ends up in the oceans or is incinerated, causing massive CO2 emissions. The use of in production is also problematic. However, none of us can do without plastic entirely.

"Polymers and plastics are very useful that make a wide range of everyday applications possible in the first place. Lighter cars, smartphones, modern clothes and many medical devices would not exist if we hadn't invented polymers," says Jan-Georg Rosenboom, a fresh Ph.D. graduate in the research group of ETH professor Massimo Morbidelli at the Department of Chemistry and Applied Biosciences. "The question is how we can reduce the negative environmental impact of plastic while maintaining its benefits for our society."

Better material properties

One answer could be biobased polymers, so-called bioplastics. These have very similar properties to conventional plastics, but are made from plant-based instead of crude oil. Some bioplastics are also biodegradable and enable better composting.

PEF bioplastics are indistinguishable from conventional PET on the outside. Credit: ETH Zurich / Jan-Georg Rosenboom

Massimo Morbidelli's group is investigating a promising bioplastic called polyethylene furanoate (PEF). PEF is chemically very similar to PET, but consists of 100% renewable raw materials such as forestry and agricultural wastes. PEF bottles, for example, require less material, are lighter and more stable than their PET competitors and make beverages last longer. Although PEF is not biodegradable, it can be incinerated in an environmentally friendly manner besides recycling, as no additional CO2 emissions are produced.

The fact that PEF has not yet been able to establish itself on the market is primarily due to its time- and energy-intensive production. The ETH doctoral students Jan-Georg Rosenboom and Peter Fleckenstein, together with ETH professor Giuseppe Storti, have now developed a method that could enable the commercial breakthrough of PEF. Yesterday their research results were published in the journal Nature Communications.

Energy-efficient and fast production

"Our method reduces production time from several days to a few hours. In addition, discoloration in the end product can be avoided in contrast to previous processes," says Jan-Georg Rosenboom and explains: "Instead of making the usual "rope-like" polymer chains with two end points react, we first tie rings from the latter, which thus have no ends anymore. These rings can then be polymerized to PEF much more quickly and in a controlled manner. This is because no chemical by- are produced and have to be removed, when the rings are opened and connected to form the final long "polymer rope". The very fast reaction within minutes enables PEF products that are superior in to PET and reduces energy requirements."

In addition, the method of ring opening allows a precise adjustment of the product quality, which was not possible with the previous production process. Thus, the new method could also be interesting for the production of other types of plastics and bioplastics. Due to its good material properties, the PEF could possibly also replace multilayer materials that are difficult to recycle.

Currently, the scientists are working with Sulzer to investigate how the new process could be implemented in industrial . Despite the many advantages offered by PEF, it cannot solve all existing problems on its own, says Rosenboom, stressing: "Education and an improved awareness of how to handle plastics will continue to be crucial in order to stop the increasing environmental pollution. However, progress in manufacturing and recycling technologies will facilitate the transition towards a sustainable society".

Explore further: Plastic is light, versatile and here to stay—for now

More information: Jan-Georg Rosenboom et al. Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers, Nature Communications (2018). DOI: 10.1038/s41467-018-05147-y

Related Stories

Scientific advances can make it easier to recycle plastics

November 17, 2017

Most of the 150 million tons of plastics produced around the world every year end up in landfills, the oceans and elsewhere. Less than 9 percent of plastics are recycled in the United States, rising to about 30 percent in ...

Seaweed, Indonesia's answer to the global plastic crisis

June 4, 2018

The impacts of global plastic use have reached an alarming level. Based on the latest data, 9 billion tonnes of plastics have been produced since the 1950s, creating 7 billion tonnes of waste. Plastic waste not only damages ...

Discovering the "third generation" of bioplastics

July 4, 2017

The ongoing revolution in packaging is the use of 100% organic materials obtained from the leftovers of agricultural production. An expert from the Italian National Research Council (CNR) says that in the early 2020s these ...

Recommended for you

Engineers repurpose wasp venom as an antibiotic drug

December 7, 2018

The venom of insects such as wasps and bees is full of compounds that can kill bacteria. Unfortunately, many of these compounds are also toxic for humans, making it impossible to use them as antibiotic drugs.

Researchers probe hydrogen bonds using new technique

December 7, 2018

Researchers at Carnegie Mellon University have used nuclear resonance vibrational spectroscopy to probe the hydrogen bonds that modulate the chemical reactivity of enzymes, catalysts and biomimetic complexes. The technique ...

Are amorphous solids elastic or plastic?

December 7, 2018

In a crystalline solid, the atoms form an ordered lattice. Crystalline solids respond elastically to small deformations: When the applied strain is removed, the macroscopic stress, as well as the microscopic configuration ...

Molecular insights into spider silk

December 7, 2018

Spider silk is one of the toughest fibres in nature and has astounding properties. Scientists from the University of Würzburg discovered new molecular details of self-assembly of a spider silk fibre protein.

Copycat cells command new powers of communication

December 7, 2018

From kryptonite for Superman to plant toxins for poison ivy, chemical reactions within the body's cells can be transformative. And, when it comes to transmuting cells, UC San Diego researchers are becoming superhero-like ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.