How to grow crops on Mars if we are to live on the red planet

July 26, 2018 by Briardo Llorente, The Conversation
We can create the right kind of food plants to survive on Mars. Credit: Shutterstock/SergeyDV

Preparations are already underway for missions that will land humans on Mars in a decade or so. But what would people eat if these missions eventually lead to the permanent colonisation of the red planet?

Once (if) humans do make it to Mars, a major challenge for any colony will be to generate a stable supply of . The enormous costs of launching and resupplying resources from Earth will make that impractical.

Humans on Mars will need to move away from complete reliance on shipped cargo, and achieve a high level of self-sufficient and sustainable agriculture.

The recent discovery of on Mars – which adds new information to the question of whether we will find life on the planet – does raise the possibility of using such supplies to help grow food.

But water is only one of many things we will need if we're to grow enough food on Mars.

What sort of food?

Previous work has suggested the use of microbes as a source of food on Mars. The use of hydroponic greenhouses and controlled environmental systems, similar to one being tested onboard the International Space Station to grow crops, is another option.

This month, in the journal Genes, we provide a new perspective based on the use of advanced synthetic biology to improve the potential performance of plant life on Mars.

Synthetic biology is a fast-growing field. It combines principles from engineering, DNA science, and computer science (among many other disciplines) to impart new and improved functions to living organisms.

Not only can we read DNA, but we can also design biological systems, test them, and even engineer whole organisms. Yeast is just one example of an industrial workhorse microbe whose whole genome is currently being re-engineered by an international consortium.

The technology has progressed so far that precision genetic engineering and automation can now be merged into automated robotic facilities, known as biofoundries.

These biofoundries can test millions of DNA designs in parallel to find the organisms with the qualities that we are looking for.

Mars: Earth-like but not Earth

Although Mars is the most Earth-like of our neighbouring planets, Mars and Earth differ in many ways.

The gravity on Mars is around a third of that on Earth. Mars receives about half of the sunlight we get on Earth, but much higher levels of harmful ultraviolet (UV) and cosmic rays. The surface temperature of Mars is about -60℃ and it has a thin atmosphere primarily made of carbon dioxide.

Unlike Earth's soil, which is humid and rich in nutrients and microorganisms that support plant growth, Mars is covered with regolith. This is an arid material that contains perchlorate chemicals that are toxic to humans.

Also – despite the latest sub-surface lake find – water on Mars mostly exists in the form of ice, and the low atmospheric pressure of the planet makes liquid water boil at around 5℃.

Plants on Earth have evolved for hundreds of millions of years and are adapted to terrestrial conditions, but they will not grow well on Mars.

This means that substantial resources that would be scarce and priceless for humans on Mars, like liquid water and energy, would need to be allocated to achieve efficient farming by artificially creating optimal conditions.

Adapting plants to Mars

A more rational alternative is to use synthetic biology to develop crops specifically for Mars. This formidable challenge can be tackled and fast-tracked by building a plant-focused Mars biofoundry.

Such an automated facility would be capable of expediting the engineering of biological designs and testing of their performance under simulated Martian conditions.

With adequate funding and active international collaboration, such an advanced facility could improve many of the traits required for making crops thrive on Mars within a decade.

This includes improving photosynthesis and photoprotection (to help protect from sunlight and UV rays), as well as drought and cold tolerance in plants, and engineering high-yield functional crops. We also need to modify microbes to detoxify and improve the Martian soil quality.

These are all challenges that are within the capability of modern .

Benefits for Earth

Developing the next generation of crops required for sustaining humans on Mars would also have great benefits for people on Earth.

The growing global population is increasing the demand for food. To meet this demand we must increase agricultural productivity, but we have to do so without negatively impacting our environment.

The best way to achieve these goals would be to improve the crops that are already widely used. Setting up facilities such as the proposed Mars Biofoundry would bring immense benefit to the turnaround time of plant research with implications for food security and environmental protection.

So ultimately, the main beneficiary of efforts to develop for Mars would be Earth.

Explore further: What it would take for life on Mars

Related Stories

What it would take for life on Mars

October 1, 2015

In light of NASA's recent evidence that liquid water flows on present-day Mars, the release of sci-fi film The Martian could not have come at a better time.

Earthworms can reproduce in Mars soil simulant

November 27, 2017

Two young worms are the first offspring in a Mars soil experiment at Wageningen University & Research. Biologist Wieger Wamelink found them in a Mars soil simulant that he obtained from NASA. At the start he only added adult ...

Vegetables on Mars within ten years?

April 15, 2014

The soil on Mars may be suitable for cultivating food crops – this is the prognosis of a study by plant ecologist Wieger Wamelink of Wageningen UR. This would prove highly practical if we ever decide to send people on a ...

Designing the hanging gardens of Mars

April 26, 2017

NASA is all about solving challenges, and the goal of having a prolonged presence in space, or a colony on Mars or some other world, is full of challenges, including the necessity of growing food. Scientists at Kennedy Advanced ...

Meteorites reveal story of Martian climate

January 10, 2018

Liquid water is not stable on Mars' surface because the planet's atmosphere is too thin and temperatures are too cold. However, at one time Mars hosted a warm and wet surface environment that may have been conducive to life. ...

Recommended for you

Team finds evidence for carbon-rich surface on Ceres

December 10, 2018

A team led by Southwest Research Institute has concluded that the surface of dwarf planet Ceres is rich in organic matter. Data from NASA's Dawn spacecraft indicate that Ceres's surface may contain several times the concentration ...

InSight lander 'hears' Martian winds

December 7, 2018

NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport InSight lander, which touched down on Mars just 10 days ago, has provided the first ever "sounds" of Martian winds on the Red Planet. A ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Tony Lance
not rated yet Jul 27, 2018
Water Cycle on Dry as a Bone Mars.
Water bound in Perchlorate crystals is the answer to all the questions.
1. What rain falls on Mars?
2. What lakes fill up with on Mars?
3. What do you fill your two buckets with on Mars?
4. What gives 1 bucket of water when boiled at 24C on Mars?
5. What yields water dew twice a day on Mars?
6. Why build a habitat next to a lake on Mars?
7. What makes up 1% of the regolith on Mars?
8. Where did the oceans go for conservation when Mars dried up?
9. Where does the ice ablation of the poles go in summer on Mars?
10. What flows across the surface of Mars faster than sand?
Tony Lance Dip.Math(Open) 22nd November 2017

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.