A new brain-inspired computer takes us one step closer to simulating brain neural networks in real-time

July 11, 2018, Frontiers
Credit: CC0 Public Domain

A computer built to mimic the brain's neural networks produces similar results to that of the best brain-simulation supercomputer software currently used for neural-signaling research, finds a new study published in the open-access journal Frontiers in Neuroscience. Tested for accuracy, speed and energy efficiency, this custom-built computer named SpiNNaker, has the potential to overcome the speed and power consumption problems of conventional supercomputers. The aim is to advance our knowledge of neural processing in the brain, to include learning and disorders such as epilepsy and Alzheimer's disease.

"SpiNNaker can support detailed biological models of the cortex—the outer layer of the brain that receives and processes information from the senses—delivering results very similar to those from an equivalent supercomputer software simulation," says Dr. Sacha van Albada, lead author of this study and leader of the Theoretical Neuroanatomy group at the Jülich Research Centre, Germany. "The ability to run large-scale detailed neural networks quickly and at low power consumption will advance robotics research and facilitate studies on learning and brain disorders."

The is extremely complex, comprising 100 billion interconnected brain cells. We understand how individual neurons and their components behave and communicate with each other and on the larger scale, which areas of the brain are used for sensory perception, action and cognition. However, we know less about the translation of neural activity into behavior, such as turning thought into muscle movement.

Supercomputer software has helped by simulating the exchange of signals between neurons, but even the best software run on the fastest supercomputers to date can only simulate 1% of the human brain.

"It is presently unclear which computer architecture is best suited to study whole-brain networks efficiently. The European Human Brain Project and Jülich Research Centre have performed extensive research to identify the best strategy for this highly complex problem. Today's supercomputers require several minutes to simulate one second of real time, so studies on processes like learning, which take hours and days in real time are currently out of reach." explains Professor Markus Diesmann, co-author, head of the Computational and Systems Neuroscience department at the Jülich Research Centre.

He continues, "There is a huge gap between the energy consumption of the brain and today's supercomputers. Neuromorphic (brain-inspired) computing allows us to investigate how close we can get to the energy efficiency of the brain using electronics."

Developed over the past 15 years and based on the structure and function of the human brain, SpiNNaker—part of the Neuromorphic Computing Platform of the Human Brain Project—is a custom-built computer composed of half a million of simple computing elements controlled by its own software. The researchers compared the accuracy, speed and of SpiNNaker with that of NEST—a specialist software currently in use for neuron-signaling research.

"The simulations run on NEST and SpiNNaker showed very similar results," reports Steve Furber, co-author and Professor of Computer Engineering at the University of Manchester, UK. "This is the first time such a detailed simulation of the cortex has been run on SpiNNaker, or on any neuromorphic platform. SpiNNaker comprises 600 circuit boards incorporating over 500,000 small processors in total. The simulation described in this study used just six boards—1% of the total capability of the machine. The findings from our research will improve the to reduce this to a single board."

Van Albada shares her future aspirations for SpiNNaker, "We hope for increasingly large real-time simulations with these neuromorphic computing systems. In the Human Brain Project, we already work with neuroroboticists who hope to use them for robotic control."

Explore further: Researchers find algorithm for large-scale brain simulations

More information: Sacha J. van Albada et al, Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model, Frontiers in Neuroscience (2018). DOI: 10.3389/fnins.2018.00291

Related Stories

Human Brain Project launches European research infrastructure

March 30, 2016

The Human Brain Project (HBP) is developing a shared European research infrastructure with the aim of examining the organization of the brain using detailed analyses and simulations and thus combating neurological and psychiatric ...

Small brain models distort contact intensity between neurons

September 10, 2015

The goal of brain simulations using supercomputers is to understand the processes in our brain. This is a mammoth task: the activity of an estimated 100 billion nerve cells - also known as neurons - must be represented . ...

Scientists develop robot with learned motor control

October 19, 2017

The two main pitfalls of robots that imitate the human body are control and cost. Researchers from the MoCoTi European project have designed a prototype of a robot that learns how to actuate its own limbs, and that can be ...

Chips hold the key to understanding the human brain

July 7, 2011

Chips based on ARM processor technology will be linked together to simulate the highly-complex workings of the brain, whose functionality derives from networks of billions of interacting, highly-connected neurons.

Recommended for you

A novel approach of improving battery performance

September 18, 2018

New technological developments by UNIST researchers promise to significantly boost the performance of lithium metal batteries in promising research for the next-generation of rechargeable batteries. The study also validates ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.