Research toward viable, safe batteries overcomes high resistance, low capacity solid-state barriers

June 13, 2018 by Catherine Stephens, University of Maryland
Credit: A. James Clark School of Engineering, University of Maryland

Engineers at the University of Maryland have developed a means to overcome obstacles in the development of solid-state batteries, primarily high resistance and low capacity. Dr. Eric Wachsman, Director of the Maryland Energy Innovation Institute and William L. Crentz Centennial Chair in Energy Research, and his group have broken these barriers through the fabrication of a uniquely microstructured solid electrolyte architecture based on a doped Li7La3Zr2O12 (LLZ) ceramic Li-conductor. The paper describing this technique was recently published in Materials Today.

Dr. Eric Wachsman, lead researcher, noted, "There has been tremendous interest in due to their inherent safety and potential for game changing increase in energy density by use of Li metal anodes. However, until this work the Li-cycling current densities were too low to achieve commercially viable charge and discharge rates. Now that this has been achieved the potential of solid-state batteries can finally be realized."

Trilayer structures were produced through a low-cost, easily scalable tapecasting process. Without any gaps between grains, the dense layer is free from structural defects, blocking dendritic growth that could short circuit the cell and increasing mechanical strength. The porous-dense-porous LLZ trilayer structure serves multiple functions, resulting in a low resistance, mechanically strong structure capable of high-rate lithium cycling.

Dr. Greg Hitz, CTO of Ion Storage Systems, a battery start up company out of UMD, also stated, "Our group's extensive experience as electrochemists and ceramists led to the trilayer design that we believe is the ideal configuration for next-generation solid state batteries. The demonstration of high rate lithium cycling in the trilayer ceramic structure was the realization of our multi-year vision and represents a platform for lithium-sulfur, layered oxide cathodes, high voltage spinels, or other future battery chemistries."

The technique has already surpassed DOE Fast-Charge current density goal with a large per-cycle areal capacity, which has never previously been demonstrated for lithium cycling in solid electrolytes. Future work will focus on increasing cumulative plating capacity and fraction of lithium passed per cycle to further achieve these targets. These results offer a commercially viable means of producing safe, non-combustible, with high specific energy and high specific density.

Explore further: New method increases energy density in lithium batteries

More information: Gregory T. Hitz et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture, Materials Today (2018). DOI: 10.1016/j.mattod.2018.04.004

Related Stories

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Researchers design dendrite-free lithium battery

January 8, 2018

By designing a solid electrolyte that is rigid on one side and soft on the other, researchers have fabricated a lithium-metal battery that completely suppresses dendrite formation—a major safety hazard that can cause fires ...

Recommended for you

Researchers engineer a tougher fiber

February 22, 2019

North Carolina State University researchers have developed a fiber that combines the elasticity of rubber with the strength of a metal, resulting in a tougher material that could be incorporated into soft robotics, packaging ...

A quantum magnet with a topological twist

February 22, 2019

Taking their name from an intricate Japanese basket pattern, kagome magnets are thought to have electronic properties that could be valuable for future quantum devices and applications. Theories predict that some electrons ...

Good dog? Bad dog? Their personalities can change

February 22, 2019

When dog-parents spend extra time scratching their dogs' bellies, take their dogs out for long walks and games of fetch, or even when they feel constant frustration over their dogs' naughty chewing habits, they are gradually ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.