Research toward viable, safe batteries overcomes high resistance, low capacity solid-state barriers

June 13, 2018 by Catherine Stephens, University of Maryland
Credit: A. James Clark School of Engineering, University of Maryland

Engineers at the University of Maryland have developed a means to overcome obstacles in the development of solid-state batteries, primarily high resistance and low capacity. Dr. Eric Wachsman, Director of the Maryland Energy Innovation Institute and William L. Crentz Centennial Chair in Energy Research, and his group have broken these barriers through the fabrication of a uniquely microstructured solid electrolyte architecture based on a doped Li7La3Zr2O12 (LLZ) ceramic Li-conductor. The paper describing this technique was recently published in Materials Today.

Dr. Eric Wachsman, lead researcher, noted, "There has been tremendous interest in due to their inherent safety and potential for game changing increase in energy density by use of Li metal anodes. However, until this work the Li-cycling current densities were too low to achieve commercially viable charge and discharge rates. Now that this has been achieved the potential of solid-state batteries can finally be realized."

Trilayer structures were produced through a low-cost, easily scalable tapecasting process. Without any gaps between grains, the dense layer is free from structural defects, blocking dendritic growth that could short circuit the cell and increasing mechanical strength. The porous-dense-porous LLZ trilayer structure serves multiple functions, resulting in a low resistance, mechanically strong structure capable of high-rate lithium cycling.

Dr. Greg Hitz, CTO of Ion Storage Systems, a battery start up company out of UMD, also stated, "Our group's extensive experience as electrochemists and ceramists led to the trilayer design that we believe is the ideal configuration for next-generation solid state batteries. The demonstration of high rate lithium cycling in the trilayer ceramic structure was the realization of our multi-year vision and represents a platform for lithium-sulfur, layered oxide cathodes, high voltage spinels, or other future battery chemistries."

The technique has already surpassed DOE Fast-Charge current density goal with a large per-cycle areal capacity, which has never previously been demonstrated for lithium cycling in solid electrolytes. Future work will focus on increasing cumulative plating capacity and fraction of lithium passed per cycle to further achieve these targets. These results offer a commercially viable means of producing safe, non-combustible, with high specific energy and high specific density.

Explore further: New method increases energy density in lithium batteries

More information: Gregory T. Hitz et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture, Materials Today (2018). DOI: 10.1016/j.mattod.2018.04.004

Related Stories

New method increases energy density in lithium batteries

October 24, 2016

Yuan Yang, assistant professor of materials science and engineering at Columbia Engineering, has developed a new method to increase the energy density of lithium (Li-ion) batteries. He has built a trilayer structure that ...

Researchers design dendrite-free lithium battery

January 8, 2018

By designing a solid electrolyte that is rigid on one side and soft on the other, researchers have fabricated a lithium-metal battery that completely suppresses dendrite formation—a major safety hazard that can cause fires ...

Recommended for you

Interfacing with the brain

June 15, 2018

The nervous system is loaded with encoded information: thoughts, emotions, motor control. This system in our bodies is an enigma, and the more we can do to understand it, the more we can do to improve human life. Brain-machine ...

Electronic skin stretched to new limits

June 15, 2018

An electrically conductive hydrogel that takes stretchability, self-healing and strain sensitivity to new limits has been developed at KAUST. "Our material outperforms all previously reported hydrogels and introduces new ...

Researchers can count on improved proteomics method

June 15, 2018

Every cell in the body contains thousands of different protein molecules and they can change this composition whenever they are induced to perform a particular task or convert into a different cell type. Understanding how ...

Modern alchemists are making chemistry greener

June 14, 2018

Ancient alchemists tried to turn lead and other common metals into gold and platinum. Modern chemists in Paul Chirik's lab at Princeton are transforming reactions that have depended on environmentally unfriendly precious ...

This is what a stretchy circuit looks like

June 14, 2018

Researchers in China have made a new hybrid conductive material—part elastic polymer, part liquid metal—that can be bent and stretched at will. Circuits made with this material can take most two-dimensional shapes and ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.