Scientists studying nuclear spin make a surprising discovery

June 4, 2018, US Department of Energy
When spin-aligned (polarized) protons collide with another beam of protons, particles called neutrons come out with a slight rightward preference. But when polarized protons collide with much larger gold nuclei, the neutrons’ directional preference becomes larger and switches to the left. These surprising results imply that the mechanisms producing particles along the proton projectile’s path may be very different in these two types of collisions. Credit: US Department of Energy

In proton-proton smashups, more neutrons scatter to the right than the left relative to the proton spin direction. That was the accepted wisdom, and scientists thought the pattern would hold even when the protons struck larger nuclei. Painstaking new research shows that's not the case. Scientists analyzed collisions of spinning protons with different-sized atomic nuclei at the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). They found that increasing the size of the nucleus "target" caused neutrons scattering from these collisions to switch their directional "preference" from rightward to leftward. The results suggest that the mechanisms producing the scattered neutrons differ depending on the size of the target.

Understanding how particles are produced in nuclear collisions could have big implications for interpreting other high-energy particle collisions. Information from these collisions offers insights into the nature of and forces governing matter, which builds the world around us, from tiny living cells to gigantic stars. Further, this new result adds to the puzzling story of what causes the change in scattering direction in the first place. These and other results from RHIC's polarized collisions will eventually contribute to answering this question.

When RHIC physicists first collided spin-aligned protons with much larger gold nuclei in 2015, they expected to see neutrons emerging along the path of the proton projectile skewed slightly to the right as they had in earlier proton-proton collisions. But instead, they observed a much larger directional to the left instead of right. They undertook a painstaking review of their analysis and performed detector simulations to be sure they weren't just seeing a detector artifact or an effect of the way the colliding beams were aligned. Then they worked with RHIC's accelerator physicists to repeat the experiment under even more precisely controlled conditions and included measurements with intermediate-sized aluminum nuclei. These findings revealed that the neutrons' directional preference was real and toward the right in proton-proton collisions, nearly zero (meaning no preference) in the proton-aluminum collisions, and very strong and leftward in the proton-gold smashups.

To understand the findings, the scientists had to look more closely at the processes and forces affecting the scattering particles. Their analyses suggest that the very large positive electric charge on the gold nucleus, with 79 positively charged protons, results in strong electromagnetic interactions that play a much more important role in particle production than they do in the case when two small, equally charged protons collide. In those , the opposite directional preference is driven, instead, by interactions among the particles' internal quarks and gluons, governed by the strong nuclear force. The scientists will continue to analyze their data from the 2015 experiments in different ways to see how the effect depends on other variables, such as the momentum of the particles in various directions. They'll also look at how preferences of other than neutrons are affected and work with theorists to better understand their results and the origin of transverse spin asymmetries in proton-proton and proton-nucleus collisions.

Explore further: Surprising result shocks scientists studying spin

More information: C. Aidala et al. Nuclear Dependence of the Transverse-Single-Spin Asymmetry for Forward Neutron Production in Polarized p+A Collisions at sNN=200 GeV, Physical Review Letters (2018). DOI: 10.1103/PhysRevLett.120.022001

Related Stories

Surprising result shocks scientists studying spin

January 8, 2018

Imagine playing a game of billiards, putting a bit of counter-clockwise spin on the cue ball and watching it deflect to the right as it strikes its target ball. With luck, or skill, the target ball sinks into the corner pocket ...

A very special run for the LHCb experiment

November 30, 2017

For the first time, the LHCb experiment at CERN has collected data simultaneously in collider and in fixed-target modes. With this, the LHCb special run is even more special.

Recommended for you

Coffee-based colloids for direct solar absorption

March 22, 2019

Solar energy is one of the most promising resources to help reduce fossil fuel consumption and mitigate greenhouse gas emissions to power a sustainable future. Devices presently in use to convert solar energy into thermal ...

Physicists reveal why matter dominates universe

March 21, 2019

Physicists in the College of Arts and Sciences at Syracuse University have confirmed that matter and antimatter decay differently for elementary particles containing charmed quarks.

ATLAS experiment observes light scattering off light

March 20, 2019

Light-by-light scattering is a very rare phenomenon in which two photons interact, producing another pair of photons. This process was among the earliest predictions of quantum electrodynamics (QED), the quantum theory of ...

How heavy elements come about in the universe

March 19, 2019

Heavy elements are produced during stellar explosion or on the surfaces of neutron stars through the capture of hydrogen nuclei (protons). This occurs at extremely high temperatures, but at relatively low energies. An international ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.