Harmonic oscillator's most 'classical-like' state exhibits nonclassical behavior

June 14, 2018 by Lisa Zyga, Phys.org feature
In the proposed experiment to test the violation of macrorealism, a particle oscillates between two sides of a harmonic well. Credit: S. Bose et al. ©2018 American Physical Society

Showing just how blurry the boundary is between the quantum and classical worlds, physicists in a new study have theoretically demonstrated that a macroscopic oscillating object initially in a classical-like coherent state can exhibit nonclassical behavior—namely, it can violate the classical notion of realism by not having a single definite state at any given moment. Instead, the oscillator has one of two states with a certain probability, as theoretically shown by non-invasive measurements of the oscillator's position at different times.

The physicists, S. Bose at University College London; D. Home at the Bose Institute in Kolkata, India; and S. Mal at the S.N. Bose National Center for Basic Science in Kolkata, India, have published a paper on the nonclassicality of a harmonic oscillator's most classical-like state in a recent issue of Physical Review Letters.

"Einstein's intriguing and much debated question 'Is the moon there when nobody looks at it?' concerns the everyday notion of macrorealism, which lies at the core of the classical worldview," Home told Phys.org. "To put it simply, macrorealism means that, at any instant, a system is in a definite state having definite properties, irrespective of any observation/measurement.

"In this context, our work opens up a novel direction for testing macrorealism by showing that the quantum mechanical violation of macrorealism is testable for a system like a harmonic oscillator, which has a well-defined classical description and is initially in a state which is the most classical-like of all quantum , the harmonic oscillator coherent state."

In their work, the physicists proposed a test involving a linear harmonic oscillator that can be implemented using a macroscopic particle that oscillates between two sides (left and right) of a harmonic well. The two sides of the well correspond to the particle's two possible states. By performing a noninvasive measurement, it's possible to determine which of the two states the particle is in without affecting its future behavior.

The researchers then used a test in which a particle's state is measured at two different times in four different runs of the experiment. By making two assumptions—that the particle obeys realism and that the measurements are non-invasive—restrictions can be placed on the possible outcomes of these measurements, giving rise to a testable prediction in the form of a Leggett-Garg inequality.

The main result of the study is that, in this example, the quantum mechanical predictions violate the Leggett-Garg inequality even for with large mass. This implies that either the particle does not obey realism or that the measurements are invasive. But as the physicists ruled out the latter by proposing to use a measurement procedure called the negative result measurement, which is specifically designed to be noninvasive, the results indicate that the particle does not obey realism, a sign of nonclassical behavior.

As the physicists explained, theoretically it's possible for a particle of any mass to violate realism using this test, up to and including large macroscopic objects. The researchers argue that it may be experimentally feasible to use optically trapped nano-objects with masses of a million to a billion times heavier than the hydrogen atom to violate the Leggett-Garg inequality, thereby demonstrating violation of macrorealism for large masses.

On the other hand, it should be much easier to experimentally demonstrate the violation for smaller masses since tests with larger masses require experimentally difficult-to-attain values for other parameters, such as the momentum. By the same token, if these other parameters are fixed, then an object may be too large to violate the inequality, indicating a lack of nonclassical behavior.

Although there are other methods of testing for nonclassical behavior, the physicists believe that the new test is arguably the simplest method yet. The researchers expect that the test can be implemented using currently available, cutting-edge technology. Already, a group at the University of Southampton has plans to experimentally implement the test in the coming months.

"The experimental complexity is seemingly far less than that for competitive matter wave interferometry experiments following the same goal, namely to test the possible macroscopic limits of quantum mechanics and the validity of the notion of macrorealism," Home said.

Explore further: Easing uncertainty

More information: S. Bose, D. Home, and S. Mal. "Nonclassicality of the Harmonic-Oscillator Coherent State Persisting up to the Macroscopic Domain." Physical Review Letters. DOI: 10.1103/PhysRevLett.120.210402

Related Stories

Easing uncertainty

April 3, 2018

Heisenberg's uncertainty principle, the fundamental impossibility of simultaneously measuring properties such as position and momentum, is at the heart of quantum theory. Physicists at ETH Zurich have now demonstrated an ...

Better tests for Schrodinger cats (Updated)

April 18, 2016

In a classical world, objects have pre-existing properties, physical influences are local and cannot travel faster than the speed of light, and it is in principle possible to measure the properties of macroscopic systems ...

Recommended for you

How community structure affects the resilience of a network

June 22, 2018

Network theory is a method for analyzing the connections between nodes in a system. One of the most compelling aspects of network theory is that discoveries related to one field, such as cellular biology, can be abstracted ...

Water can be very dead, electrically speaking

June 21, 2018

In a study published in Science this week, the researchers describe the dielectric properties of water that is only a few molecules thick. Such water was previously predicted to exhibit a reduced electric response but it ...

3 comments

Adjust slider to filter visible comments by rank

Display comments: newest first

howhot3
5 / 5 (3) Jun 14, 2018
I love it. A hyper-perfect example of 1D fuzzy and 1D straight line simultaneously! Quantum rules!
sirdumpalot
5 / 5 (2) Jun 15, 2018
There is no 'classical world', only the classical limit of the quantum world. There is no 'quantum world', only the quantum limit of the classical world. Rovelli's relational QM and Nagarjuna again!
swordsman
5 / 5 (1) Jun 15, 2018
I constructed a classical electronic model of the hydrogen atom that can oscillate at a large number of "quantum states". These results were presented in the Chemical Society publication (CSIE) several years ago. It also conforms to the physical model of the hydrogen atom. The analogies between electronic and mechanical model have been known for decades.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.