A new way to measure energy in microscopic machines

June 8, 2018 by Ben P. Stein, National Institute of Standards and Technology
Illustration shows two DNA molecules in a nanofluidic staircase. The staircase confines the DNA molecules, creating a free energy that is higher at the top and lower at the bottom. The DNA molecules mostly descend the staircase to reduce their energy and relax, but sometimes ascend the staircase as microscopic fluctuations increase their energy. Bottom: Microscope images show two DNA molecules in the staircase. Jagged white lines show their trajectories. Letters mark different images of each molecule taken at one-minute intervals. Vertical white lines show the positions of step edges. The molecule at the top right mostly descends the staircase. The molecule at the bottom left ascends two steps before descending. Relaxation Fluctuation Spectroscopy is a new method of analyzing such fluctuating trajectories to measure the free energy of microscopic systems. Credit: NIST

What drives cells to live and engines to move? It all comes down to a quantity that scientists call "free energy," essentially the energy that can be extracted from any system to perform useful work. Without this available energy, a living organism would eventually die and a machine would lie idle.

In work at the National Institute of Standards and Technology (NIST) and the University of Maryland in College Park, researchers have devised and demonstrated a new way to measure . By using microscopy to track and analyze the fluctuating motion or configuration of or other small objects, the new method can be applied to a greater variety of microscopic and nanoscopic systems than previous techniques.

"Scientists have relied on free energy to understand complex systems since the development of steam engines. This concept will continue to be just as fundamental as we engineer and design proteins and other single-molecule systems," noted NIST's David Ross, first author of a new paper on this work in Nature Physics. "But the measurements are much harder for those small systems—so approaches like the new one we describe will be of fundamental importance," he added.

By measuring changes in free energy as a system moves or alters its internal structure, scientists can predict certain aspects of how a living system will behave or how a machine will operate—without the impossible task of keeping track of the comings and goings of all the atoms and molecules that make up the system.

An everyday example of free energy is in the of an automobile, with a total energy equal to the energy of its motion plus the heat it generates. Subtracting the heat energy, which dissipates from the system, leaves the free energy.

In one method, scientists use a microscopic force sensor to pull on a protein or DNA molecule, which can behave as a miniature spring when stretched or compressed, to measure changes in force and position as a system relaxes and releases energy. However, the attachment of the force sensor can disturb the microscopic system and cannot be used to measure changes in free energy that do not involve a straightforward change in position.

Microscope video shows two DNA molecules in a nanofluidic staircase, with jagged white lines indicating their trajectories. Vertical white lines show the positions of step edges. The molecule at top right mostly descends the staircase. The molecule at bottom left ascends two steps before descending. Relaxation Fluctuation Spectroscopy is a new method of analyzing such fluctuating trajectories to measure the free energy of microscopic systems. Credit: NIST

The new method, which can use optical microscopy to track the motion or configuration of small systems, determines free energies without the attachment to a . The new analysis could prove a powerful way to peer into the inner workings of a broad variety of microscopic systems, including living systems such as viruses or cells to better understand the processes, such as energy intake, chemical reactions and the movement of molecules that keep living systems functioning.

"We are surrounded by natural systems that take advantage of microscopic fluctuations in free energy, and now we have a way to better measure, understand, and, ultimately, manipulate these fluctuations ourselves," said co-author Elizabeth Strychalski of NIST.

The analysis lends itself to studying microscopic systems that start in a highly excited state with high energy, far from equilibrium with their surroundings, and then relax back toward equilibrium. The properties of can fluctuate significantly as they relax due to the random motion from continuous jostling by surrounding molecules. The new method, which the team refers to as Relaxation Fluctuation Spectroscopy (ReFlucS), uses measurements of those fluctuations during relaxation to determine the free energy.

"Our approach shows that useful information can be gleaned from observing the random motions of a system as it settles down from a highly excited, far-from-equilibrium state," said co-author Christopher Jarzynski of the University of Maryland.

As an exemplary system, the scientists studied the motion of DNA molecules confined to a nanometer-scale space shaped like a staircase. To squeeze into the top steps, which are the shallowest, the DNA molecules must be compressed more tightly than molecules that occupy the bottom steps. This results in a higher free energy for the molecules at the top. By applying an electric field, the team drove the DNA molecules into the top of the staircase. The researchers then turned off the electric field and observed the movement of the molecules with an optical microscope.

The DNA molecules mostly descended the staircase as they relaxed toward equilibrium, decreasing their free energy. However, due to microscopic fluctuations, the DNA molecules occasionally moved back up the staircase, increasing their free energy. The researchers analyzed the fluctuating motion of the DNA , allowing them to map out the free-energy profile—how much free energy there is at different locations, and where the energy is high and low.

"ReFlucS provides access to information about free that was previously inaccessible," said co-author Samuel Stavis of NIST.

Explore further: Physicists prove energy input predicts molecular behavior

More information: David Ross et al, Equilibrium free energies from non-equilibrium trajectories with relaxation fluctuation spectroscopy, Nature Physics (2018). DOI: 10.1038/s41567-018-0153-5

Related Stories

Physicists prove energy input predicts molecular behavior

March 21, 2016

The world within a cell is a chaotic space, where the quantity and movement of molecules and proteins are in constant flux. Trying to predict how widely a protein or process may fluctuate is essential to knowing how well ...

Quantum engines must break down

June 26, 2013

Our present understanding of thermodynamics is fundamentally incorrect if applied to small systems and needs to be modified, according to new research from University College London (UCL) and the University of Gdańsk. The ...

Optical nanoscope images quantum dots

January 23, 2018

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together ...

Energy jumps back and forth between molecules during transfers

October 4, 2016

The process of photosynthesis, through which plants convert sunlight into chemical energy, involves a carefully choreographed transfer of energy from molecule to molecule. Exactly how the energy is moved is not fully understood, ...

Recommended for you

Quantum computers tackle big data with machine learning

October 15, 2018

Every two seconds, sensors measuring the United States' electrical grid collect 3 petabytes of data – the equivalent of 3 million gigabytes. Data analysis on that scale is a challenge when crucial information is stored ...

Researchers report innovative optical tissue imaging method

October 15, 2018

A UK-wide research team, led by the University of St Andrews, has developed an innovative new way to optically image through tissue, which could allow for a more detailed understanding and diagnosis of the early stages of ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.