Optical nanoscope images quantum dots

January 23, 2018, University of Basel
Whereas the image taken with a normal microscope is blurry (left), the new method (right) clearly shows four quantum dots (bright yellow spots). Credit: University of Basel, Department of Physics

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel reported the findings in the journal Nature Photonics.

Conventional optical microscopes cannot be used to image individual molecules and , which measure just fractions of a nanometer across. This has to do with the wave nature of light and the associated laws of physics. According to these laws, a microscope's maximum resolution is equal to half the wavelength of the light used. For example, if you use green light with a wavelength of 500 nanometers, an optical microscope can, at best, distinguish objects at a distance of 250 nanometers.

In recent years, however, scientists have circumvented this resolution limit to generate images of structures measuring just a few nanometers across. To do so, they used lasers of various wavelengths to trigger fluorescence in molecules in part of the substance while suppressing it in the surrounding areas. This allows them to image structures such as , which are just a few nanometers in size. The development of this , stimulated emission depletion (STED) resulted in the Nobel Prize in Chemistry 2014.

Timo Kaldewey, from the University of Basel's Department of Physics and Swiss Nanoscience Institute, has now worked with colleagues at Ruhr-University Bochum (Germany) to develop a similar technique that allows the imaging of nanoscale objects, particularly a quantum mechanical two-level system. The physicists studied what are known as quantum dots, in a semiconductor, which the new method was able to image as bright spots. The scientists excited the atoms with a pulsed laser, which changes its color during each pulse. As a result, the atom's fluorescence is switched on and off.

Whereas the STED method only works by occupying at least four in response to the laser excitation, the new method from Basel also works with atoms that have just two energy states. Two-state systems of this kind constitute important model systems for quantum mechanics. Unlike STED microscopy, the new method also releases no heat. "This is a huge advantage, as any heat released can destroy the molecules you're examining," explains Richard Warburton. "Our nanoscope is suitable for all objects with two energy levels, such as real atoms, cold , , or color centers."

Explore further: Coupling a nano-trumpet with a quantum dot enables precise position determination

More information: Timo Kaldewey et al, Far-field nanoscopy on a semiconductor quantum dot via a rapid-adiabatic-passage-based switch, Nature Photonics (2018). DOI: 10.1038/s41566-017-0079-y

Related Stories

Background suppression for super-resolution light microscopy

February 1, 2017

Researchers of Karlsruhe Institute of Technology (KIT) have developed a new fluorescence microscopy method: STEDD (Stimulation Emission Double Depletion) nanoscopy produces images of highest resolution with suppressed background. ...

Researchers develop ideal single-photon source

September 7, 2015

With the help of a semiconductor quantum dot, physicists at the University of Basel have developed a new type of light source that emits single photons. For the first time, the researchers have managed to create a stream ...

Controlling quantum states atom by atom

June 9, 2016

An international consortium led by researchers at the University of Basel has developed a method to precisely alter the quantum mechanical states of electrons within an array of quantum boxes. The method can be used to investigate ...

Recommended for you

Smallest ever sieve separates atoms

March 20, 2018

Researchers at The University of Manchester have discovered that the naturally occurring gaps between individual layers of two-dimensional materials can be used as a sieve to separate different atoms.

Quantum bits in two dimensions

March 20, 2018

Two novel materials, each composed of a single atomic layer and the tip of a scanning tunneling microscope, are the ingredients for a novel kind of quantum dot. These extremely small nanostructures allow delicate control ...

Rubbery carbon aerogels greatly expand applications

March 19, 2018

Researchers have designed carbon aerogels that can be reversibly stretched to more than three times their original length, displaying elasticity similar to that of a rubber band. By adding reversible stretchability to aerogels' ...

Scientists have a new way to gauge the growth of nanowires

March 19, 2018

In a new study, researchers from the U.S. Department of Energy's (DOE) Argonne and Brookhaven National Laboratories observed the formation of two kinds of defects in individual nanowires, which are smaller in diameter than ...

Plasmons triggered in nanotube quantum wells

March 16, 2018

A novel quantum effect observed in a carbon nanotube film could lead to the development of unique lasers and other optoelectronic devices, according to scientists at Rice University and Tokyo Metropolitan University.


Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Jan 24, 2018
Optical nanoscope images quantum dots is good progressive post.My brother has to prepare his assignment and he is looking for some better best australian assignment help website.
not rated yet Mar 14, 2018
New tricks allow you to learn something about the windows mobile deep setting which is method of the necessary change ringtone in windows mobile and many more things. This is very progressive platform which show you the path of decision taking method.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.