Complex river networks better support stable watershed populations

June 13, 2018, University of Minnesota
Credit: University of Minnesota

How are populations of living organisms maintained in changing environments? This ecological question is even more imperative as many species are increasingly threatened by climate change and human influences. A new University of Minnesota study, published in the Proceedings of the National Academy of Sciences, helps answer this question for riverine organisms.

Life in streams and rivers is highly influenced by downstream flow of water through networks of connected channels, with small streams joining to form larger streams and rivers. Researchers from the University of Minnesota and Hokkaido, Japan, led by Akira Terui, Ph.D., explored how river systems underpin watershed-scale populations using mathematical models and analyses of 18 years worth of fish data in Japan. They found that more complex river networks, with greater levels of branching, stabilize watershed populations by providing a physical template that supports diverse habitats and buffers the impact of large-scale environmental fluctuations.

"We discovered watershed populations were more stable when they were situated in more complex river networks," said Terui. "Network complexity of rivers may act as a natural defense system against environmental uncertainty."

Among the study's key findings:

  • mathematical models predict increased branching stabilizes watershed-scale population dynamics when individual streams (i.e., "branches") in a network provide unique environmental conditions;
  • in support of the model prediction, branching complexity provides stabilizing effects across populations of four ecologically distinct fish species, which include economically valuable species such as masu salmon;
  • loss of network complexity due to human activities may undermine resilience of watershed populations.

"Human activities often reduce complexity of stream networks," said Jacques Finlay, Ph.D., professor in the College of Biological Sciences and co-author on the study. "This work demonstrates the critical importance of maintaining diverse environmental conditions throughout watersheds for populations of river organisms."

According to Terui, incorporating the complexity perspective into conservation decision making will help achieve greater success of environmental restoration and preservation actions in riverine systems. 

"The results of the study should be widely applicable to populations of many riverine organisms," Terui said. "Recognizing and managing for complexity of river networks is a promising tool to conserve riverine biodiversity as well as natural resources under global changes in climate and land use."

Explore further: Small streams have a big influence on our lives

More information: Akira Terui et al. Metapopulation stability in branching river networks, Proceedings of the National Academy of Sciences (2018). DOI: 10.1073/pnas.1800060115

Related Stories

Small streams have a big influence on our lives

August 7, 2017

Small streams make up 70%-80% of the total channel length of river networks, and they strongly influence downstream portions these networks. The role small streams ? known as headstreams ? play in retaining or transmitting ...

Climate change impacts fragile river ecosystems

May 16, 2018

Boulder, Colo., USA: Research undertaken in South Africa's Kruger National Park (KNP) has shown that some of the world's most sensitive and valuable riverine habitats are being destroyed due to an increasing frequency of ...

Recommended for you

Evidence of earliest life on Earth disputed

October 17, 2018

When Australian scientists presented evidence in 2016 of life on Earth 3.7 billon years ago—pushing the record back 220 million years—it was a big deal, influencing even the search for life on Mars.

Arctic greening thaws permafrost, boosts runoff

October 17, 2018

A new collaborative study has investigated Arctic shrub-snow interactions to obtain a better understanding of the far north's tundra and vast permafrost system. Incorporating extensive in situ observations, Los Alamos National ...

Arctic ice sets speed limit for major ocean current

October 17, 2018

The Beaufort Gyre is an enormous, 600-mile-wide pool of swirling cold, fresh water in the Arctic Ocean, just north of Alaska and Canada. In the winter, this current is covered by a thick cap of ice. Each summer, as the ice ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.