New and improved way to find baby planets

June 14, 2018, Carnegie Institution for Science
An artist’s impression of protoplanets forming around a young star. Credit: NRAO/AUI/NSF; S. Dagnello

New work from an international team of astronomers including Carnegie's Jaehan Bae used archival radio telescope data to develop a new method for finding very young extrasolar planets. Their technique successfully confirmed the existence of two previously predicted Jupiter-mass planets around the star HD 163296. Their work is published by the Astrophysical Journal Letters.

Of the thousands of exoplanets discovered by astronomers, only a handful are in their formative years. Finding more baby will help astronomers answer the many outstanding questions about planet formation, including the process by which our own Solar System came into existence.

Young stars are surrounded by rotating disks of gas and from which planets are formed. The 60 radio telescope antennae of the Atacama Large Millimeter/submillimeter Array, ALMA, have been able to image these disks with never-before-seen clarity.

The research team—including lead author Richard Teague and co-author Edwin Bergin of the University of Michigan, Tilman Birnstiel of the Ludwig Maximilian University of Munich, and Daniel Foreman-Mackey of the Flatiron Institute—used archival ALMA data to demonstrate that anomalies in the velocity of the gas in these rotating can be used to indicate the presence of giant planets.

Other techniques for finding baby planets in the disks surrounding young stars are based on observations of the emission coming from a disk's dust particles. But dust only accounts for one percent of a disk's mass, so the team decided to focus instead on the gas that comprises 99 percent of a young disk.

Their new technique focuses on the motion of the gas, probing radial pressure gradients in the gas to see the shape of the perturbations—like swirls and eddies in a rocky streambed—allowing astronomers to make a more-precise determination of the masses and locations of any planets embedded in the .

Their new method successfully confirmed the previously predicted existence of two Jupiter-mass planets around HD 163296. They orbit at distances of 83 and 137 times that between the Sun and the Earth, although their host star is much brighter than our own Sun.

"Although dust plays an important role in planet formation and provides us invaluable information, it is the gas that accounts for 99 percent of protoplanetary disks' mass. It is therefore crucial to study kinematics, or motion, of the gas to better understand what is happening in the disks we observe," explained Bae.

"This method will provide essential evidence to help interpret the high-resolution dust images coming from ALMA. Also, by detecting planets at this young stage we have the best opportunity yet to test how their atmospheres are formed and what molecules are delivered in this process," said lead author Teague.

Explore further: Trio of infant planets discovered around newborn star

More information: A Kinematical Detection of Two Embedded Jupiter Mass Planets in HD 163296. arxiv.org/abs/1805.10290

Related Stories

Trio of infant planets discovered around newborn star

June 13, 2018

Two independent teams of astronomers have uncovered convincing evidence that three young planets are in orbit around an infant star known as HD 163296. Using a new planet-finding strategy, the astronomers identified three ...

Rings and gaps in a developing planetary system

April 2, 2018

The discovery of an exoplanet has most often resulted from the monitoring of a star's flicker (the transiting method) or its wobble (the radial velocity method). Discovery by direct imaging is rare because it is so difficult ...

Dusty protoplanetary disks

December 8, 2017

Planetary systems form out of disks of gas and dust around young stars. How the formation proceeds, however, is complex and poorly understood. Many physical processes are involved including accretion onto the star, photoevaporation ...

New low-mass objects could help refine planetary evolution

September 26, 2016

When a star is young, it is often still surrounded by a primordial rotating disk of gas and dust, from which planets can form. Astronomers like to find such disks because they might be able to catch the star partway through ...

Peering into the heart of planet formation

May 16, 2017

For the first time, astronomers have been able to peer into the heart of planet formation, recording the temperature and amount of gas present in the regions most prolific for making planets.

A fluffy disk around a baby star

August 23, 2013

An international team of astronomers that are members of the Strategic Exploration of Exoplanets and Disks with Subaru Telescope (SEEDS) Project has used Subaru Telescope's High Contrast Instrument for the Subaru Next Generation ...

Recommended for you

Mars InSight lander seen in first images from space

December 14, 2018

On Nov. 26, NASA's InSight mission knew the spacecraft touched down within an 81-mile-long (130-kilometer-long) landing ellipse on Mars. Now, the team has pinpointed InSight's exact location using images from HiRISE, a powerful ...

Preparing for discovery with NASA's Parker Solar Probe

December 13, 2018

Weeks after Parker Solar Probe made the closest-ever approach to a star, the science data from the first solar encounter is just making its way into the hands of the mission's scientists. It's a moment many in the field have ...

Rosetta witnesses birth of baby bow shock around comet

December 12, 2018

A new study reveals that, contrary to first impressions, Rosetta did detect signs of an infant bow shock at the comet it explored for two years – the first ever seen forming anywhere in the solar system.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.