Scientists reveal the secrets behind Pluto's dunes

Scientists reveal the secrets behind Pluto's dunes
This image taken during the New Horizons mission shows the mountain range on the edge of the Sputnik Planitia ice plain, with dune formations clearly visible in the bottom half of the picture. Credit: NASA/Johns Hopkins University Applied Physics Laboratory/Southwest Research Institute

Scientists have discovered dunes on Pluto, and say they are likely to have been formed of methane ice grains released into its rarefied atmosphere.

Writing in Science, an international team of geographers, physicists and planetary scientists have analysed detailed images of the dwarf planet's surface, captured in July 2015 by NASA's New Horizons spacecraft.

Those images showed that on the boundary of the Sputnik Planitia ice plain, and pushed up against a major mountain range, there is a series of dunes spread across an area less than 75km across.

Following spatial analysis of the dunes and nearby streaks on the planet's surface, as well as spectral and numerical modelling, scientists believe that sublimation (which converts solid nitrogen directly into a gas) results in sand-sized grains of methane being released into the environment.

These are then transported by Pluto's moderate winds (which can reach between 30 and 40 kmh), with the border of the ice plain and providing the perfect location for such regular surface formations to appear.

The scientists also believe the undisturbed morphology of the dunes and their relationship with the underlying glacial ice suggests the features are likely to have been formed within the last 500,000 years, and possibly much more recently.

This short animation demonstrates how scientists from the University of Plymouth, University of Cologne and Brigham Young University now believe the dunes on Pluto were formed. Credit: University of Plymouth

The research was led by scientists from the University of Plymouth (UK), University of Cologne (Germany) and Brigham Young University (USA).

Dr. Matt Telfer, Lecturer in Physical Geography at the University of Plymouth is the paper's lead author. He said: "We knew that every solar system body with an atmosphere and a solid rocky surface has dunes on it, but we didn't know what we'd find on Pluto. It turns out that even though there is so little atmosphere, and the surface temperature is around -230?C, we still get dunes forming. The New Horizons data has given us a new level of detail, but we had to work hard to explain how it was possible to get the supply of sediment, a non-cohesive and wind you need for dunes. It is another piece of the jigsaw in making sense of this diverse and remote body, and gives us a more fundamental understanding of the geological processes which are influencing it."

Dr. Eric Parteli, Lecturer in Computational Geosciences at the University of Cologne, said: "On Earth, you need a certain strength of wind to release sand particles into the air, but winds that are 20% weaker are then sufficient to maintain transport. The considerably lower gravity of Pluto, and the extremely low atmospheric pressure, means the winds needed to maintain sediment transport can be a hundred times lower. The temperature gradients in the granular ice layer, caused by solar radiation, also play an important role in the onset of the saltation process. Put together, we have found that these combined processes can form dunes under normal, everyday wind conditions on Pluto."

Dr. Jani Radebaugh, Associate Professor in the Department of Geological Sciences at Brigham Young University, added: "When we first saw the New Horizons images, we thought instantly that these were dunes but it was really surprising because we know there is not much of an atmosphere. However despite being 30 times further away from the sun as the Earth, it turns out Pluto still has Earth-like characteristics. We have been focusing on what's close to us, but there's a wealth of information in the distant reaches of the solar system too."

The researchers now plan to continue their investigations into the history of Pluto's dunes through computer simulations, which will enable them to expand knowledge of the role wind has played in Pluto's wider geology.

Explore further

Dunes on Pluto? Can a nearly airless world have windblown dunes?

More information: M.W. Telfer at Plymouth University in Plymouth, UK el al., "Dunes on Pluto," Science (2018). … 1126/science.aao2975
Journal information: Science

Citation: Scientists reveal the secrets behind Pluto's dunes (2018, May 31) retrieved 16 October 2019 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Feedback to editors

User comments

Jun 03, 2018
This comment has been removed by a moderator.

Jun 03, 2018
Not everyone is buying this explanation, though: https://www.washi...h-dunes/

Leads to a subscription option to the Washingtom Post! Ban this sock puppet! Aka Zephir, Mackita et al.

Jun 03, 2018
The weird thing is that, if you read the Post article from Zephir's link, there's nobody in there that isn't buying the explanation for the dunes. That the dunes are shaped by winds seems likely. The only speculative part is how the "sand" gets its initial kick. Whether by sublimation or some other process doesn't matter. The dunes are still shaped by winds.

Jun 03, 2018
The only real feasible explanation is an electric/ionic wind, just as on comets such as 67P. They're guess of the magic bouncing grains falling down the mountains doesn't cut it. As a matter of fact, electrical geological processes are the only processes that can explain this along with many other features observed.

Jun 11, 2018
PLUTO - our shard of ice
For a shard of ice orbiting the sun at the extremes of our solar system that now does not even qualifi as a dwarf planet, it it giving a very good imitation of a planet, now with its winds blowing sand across its deserts creating sand dunes erouding its mountains into earth like mountain ranges.
The rate of discoveries on our 9th planet PLUTO as life is even possible in our are deserts and even in extremes of temperarature it is etirely posssible in PLUTO'S watery deserts.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more