Study details the history of Saturn's small inner moons

May 22, 2018, University of Bern
Formation of Atlas, one of the small inner moons of Saturn. Its flat, ravioli-like shape is the result of a merging collision of two similar-sized bodies. The picture is a snapshot in mid-collision, before the moon’s reorientation due to tides is completed. Credit: A. Verdier

The small inner moons of Saturn look like giant ravioli and spaetzle. Their spectacular shape has been revealed by the Cassini spacecraft. For the first time, researchers of the University of Bern show how these moons were formed. The peculiar shapes are a natural outcome of merging collisions among similar-sized little moons as computer simulations demonstrate.

When Martin Rubin, astrophysicist at the University of Bern, saw the images of Saturn's moons Pan and Atlas on the internet, he was puzzled. The close-ups taken by the Cassini spacecraft in April 2017 showed objects that NASA described in its news release as flying-saucers with diameters of about 30 km. With their large ridges and bulbous centres, Pan and Atlas also resembled giant ravioli. Martin Rubin wondered how these peculiar objects had formed and asked his colleague Martin Jutzi whether they could be the outcome of collisions, similar to the one that formed comet Chury as Jutzi had demonstrated earlier with computer simulations.

Martin Jutzi and Adrien Leleu, both members of the NCCR PlanetS, took the challenge of calculating the formation process of the small inner moons of Saturn. The first, simple tests worked well. "But then, we took the tidal forces into consideration and the problems piled up," remembers Adrien Leleu. "The conditions close to Saturn are very special," confirms Martin Jutzi. Since Saturn has 95 times more mass than Earth and the inner moons orbit the planet at a distance of less than half the distance between Earth and Moon, the tides are enormous and pull almost everything apart. Therefore, Saturn's inner moons couldn't have formed with these peculiar shapes by gradual accretion of material around a single core. An alternative model called pyramidal regime suggests that these moons were formed by a series of mergers of similar sized little moonlets.

The top row shows 3 small moons of Saturn imaged by the Cassini spacecraft. Shown at the bottom are the model outcomes. The simulations not only reproduce the shapes, but may also explain why the ridges on Pan and Atlas look different from the rest of their bodies: They are made of smooth material that was squeezed out during the merging process. Cracks on the main body could be the result of tensile stresses caused by the deformation of the merging objects. The modelled Prometheus-like moon displays the same tips at both ends as seen on the Cassini images. Credit: NASA/JPL-Caltech/Space Science Institute/University of Bern

Having solved their initial problems, the researchers could verify the pyramidal regime, but even more: They showed that the collisions of the moonlets resulted in exactly the shapes imaged by Cassini. Close to head-on mergers lead to flattened objects with large equatorial ridges, as observed on Atlas and Pan. With slightly more oblique impact angles, collisions resulted in elongated spaetzle-like shapes that closely resembled the 90-km long Prometheus as it was photographed by Cassini.

The top image shows Saturn’s large moon Iapetus as observed by Cassini. It has an oblate spheroid shape and an equatorial ridge. Bottom: The result of the simulation of a head-on merger oft two equal-sized bodies with half of the mass of Iapetus. Credit: NASA/JPL/Space Science Institute/University of Bern
Head-on collisions have high probability

Based on the current orbit of the moons and their orbital environment, the researchers were able to estimate that the impact velocities were of the order of a few 10 m/s. Simulating collisions in this range for various impact angles, they obtained various stable shapes similar to ravioli and spaetzle, but only for low impact angles. "If the impact angle is bigger than ten degrees, the resulting shapes are not stable anymore," says Adrien Leleu. Any duck-shaped object like comet Chury would fall apart because of Saturn's tides. "That is why Saturn's small moons look very different to comets that often have bilobed shapes," explains Martin Jutzi.

Interestingly, the head-on collisions are not as rare as one might think. The small inner moons are believed to originate from Saturn's rings, a thin disk located in the planet's equatorial plane. Since Saturn isn't a perfect sphere but rather oblate, it makes it hard for any object to leave this narrow plane. So, near head-on collisions are frequent and the impact angle tends to get even lower in subsequent encounters. "A significant fraction of such merging collisions take place either at the first encounter or after 1-2 hit-and-run events," the authors summarize in their paper published today in Nature Astronomy. "In this respect, Saturn is almost a toy system to study these processes," says Martin Rubin.

Collison of similar-sized moonlets orbiting around Saturn. Credit: Simulation by Adrien Leleu, Martin Jutzi and Martin Rubin / University of Bern

Although the researchers mainly focussed on the small inner moons of Saturn, they also found a possible explanation for a long-standing mystery concerning Saturn's third largest moon named Iapetus. Why does Iapetus have an oblate and a distinctive equatorial ridge? "Our modelling results suggest that these features may be a result of a merger of similar-sized moons taking place with a close to head-on impact angle, similar to the smaller moons," the researchers summarize.

Explore further: Saturn's moon Atlas shines between gas giant's rings

More information: A. Leleu et al. The peculiar shapes of Saturn's small inner moons as evidence of mergers of similar-sized moonlets, Nature Astronomy (2018). DOI: 10.1038/s41550-018-0471-7

Related Stories

Saturn's moon Atlas shines between gas giant's rings

June 18, 2014

See that small pixel? That's an entire moon you're looking at! Peeking between the rings of Saturn is the tiny saucer-shaped moon Atlas, as viewed from the Cassini spacecraft. The image is pretty, but there's also a scientific ...

ESA image: Saturn's moon Rhea, Epimetheus transiting

August 12, 2014

Saturn has a great many more moons than our planet – a whopping 62. A single moon, Titan, accounts for an overwhelming 96% of all the material orbit the planet, with a group of six other smaller moons dominating the rest. ...

Moons of Saturn may be younger than the dinosaurs

March 24, 2016

New research suggests that some of Saturn's icy moons, as well as itsfamous rings, might be modern adornments. Their dramatic birth may have taken place a mere hundred million years ago, more recent than the reign of many ...

Image: Mimas over Saturn's north pole

June 6, 2017

From high above Saturn's northern hemisphere, NASA's Cassini spacecraft gazes over the planet's north pole, with its intriguing hexagon and bullseye-like central vortex. 

Recommended for you

Solid-state catalysis: Fluctuations clear the way

February 18, 2019

The use of efficient catalytic agents is what makes many technical procedures feasible in the first place. Indeed, synthesis of more than 80 percent of the products generated in the chemical industry requires the input of ...

Engineered metasurfaces reflect waves in unusual directions

February 18, 2019

In our daily lives, we can find many examples of manipulation of reflected waves, such as mirrors, or reflective surfaces for sound that improve auditorium acoustics. When a wave impinges on a reflective surface with a certain ...

Design principles for peroxidase-mimicking nanozymes

February 18, 2019

Nanozymes, enzyme-like catalytic nanomaterials, are considered to be the next generation of enzyme mimics because they not only overcome natural enzymes' intrinsic limitations, but also possess unique properties in comparison ...

Sound waves let quantum systems 'talk' to one another

February 18, 2019

Researchers at the University of Chicago and Argonne National Laboratory have invented an innovative way for different types of quantum technology to "talk" to each other using sound. The study, published Feb. 11 in Nature ...


Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) May 22, 2018
Gentlemen, show your texts, for which you claim that your idea "as Jutzi had demonstrated earlier with computer simulations."
Functioning of the Universe http://www.svemir...-svemira
The Universe is based on the law of attraction. This law is acting under difficult conditions, movements and rotations of objects and systems inside the Universe. If objects share the same orbit or trajectory of movement, they attract each other exclusively with gravitational force. The joining of objects takes place under these conditions (the expression "collision of objects" should not be used at this place). The same laws should apply to planets and galaxies, as well as to gas and dust. ..
3 / 5 (2) May 23, 2018
So wd, if I understand you correctly? When the observed evidence contradicts your opinions? Triggering you to stamp your feet and screech defiance at the cosmos. Demanding that the universe obey your petulant indignation or you will have a hissy-fit at reality?

That'll show'em. That'll show all of us!

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.