'Game changing' space-mission power system passes tests with flying colors

May 3, 2018 by Furhana Afrid, Los Alamos National Laboratory
'game changing' space-mission power system passes tests with flying colors
Fully assembled KRUSTY core at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS). Credit: Los Alamos National Laboratory

A new nuclear power system that could enable long-duration crewed missions to the Moon, Mars and destinations beyond recently passed an extensive operating test in the Nevada desert, performing well under a variety of challenging conditions.

"We threw everything we could at this reactor, in terms of nominal and off-normal[BA(1] operating scenarios and KRUSTY passed with flying colors," said David Poston of Los Alamos National Laboratory, the chief reactor designer.

The recent experiment in Nevada, conducted by NASA and the Department of Energy's National Nuclear Security Administration (NNSA), demonstrated the can create electricity with and showed the system is stable and safe no matter what environment it encounters.

The agency announced the results of the demonstration, called the Kilopower Reactor Using Stirling Technology (KRUSTY) experiment, during a news conference today at its Glenn Research Center in Cleveland. The Kilopower experiment was conducted at the NNSA's Nevada National Security Site from November 2017 through March.

"Safe, efficient and plentiful energy will be the key to future robotic and human exploration," said Jim Reuter, NASA's acting associate administrator for the Space Technology Mission Directorate (STMD) in Washington. "I expect the Kilopower project to be an essential part of lunar and Mars power architectures as they evolve."

Kilopower is a small, lightweight fission power system capable of providing up to 10 kilowatts of electrical power—enough to run several average households—continuously for at least 10 years. Four Kilopower units would provide enough power to establish an outpost. A video explains how kilopower works.

According to Marc Gibson, lead Kilopower engineer at Glenn, the pioneering power system is ideal for the Moon, where power generation from sunlight is difficult because lunar nights are equivalent to 14 days on Earth.

NASA & National Nuclear Security Administration (NNSA) engineers lower the wall of the vacuum chamber around the KRUSTY system at the Nevada National Security Site (NNSS). Credit: Los Alamos National Laboratory
"Kilopower gives us the ability to do much higher power missions, and to explore the shadowed craters of the Moon," said Gibson. "When we start sending astronauts for long stays on the Moon and to other planets, that's going to require a new class of power that we've never needed before."

The prototype power system uses a solid, cast uranium-235 reactor core, about the size of a paper towel roll. Passive sodium heat pipes transfer reactor heat to high-efficiency Stirling engines, which convert the heat to electricity.

The Kilopower team conducted the experiment in four phases. The first two phases, conducted without power, confirmed that each component of the system behaved as expected. During the third phase, the team increased power to heat the core incrementally before moving on to the final phase. The experiment culminated with a 28-hour, full-power test that simulated a mission, including reactor startup, ramp to full power, steady operation and shutdown.

Throughout the experiment, the team simulated power reduction, failed engines and failed heat pipes, showing that the system could continue to operate and successfully handle multiple failures.

The Kilopower project is developing mission concepts and performing additional risk reduction activities to prepare for a possible future flight demonstration. The project will remain a part of the STMD's Game Changing Development program with the goal of transitioning to the Technology Demonstration Mission program in Fiscal Year 2020.

Such a demonstration could pave the way for future Kilopower systems that human outposts on the Moon and Mars, including missions that rely on In-situ Resource Utilization to produce local propellants and other materials.

The Kilopower project is led by Glenn, in partnership with NASA's Marshall Space Flight Center in Huntsville, Alabama, and NNSA, including its Los Alamos National Laboratory, Nevada National Security Site and Y-12 National Security Complex.

Explore further: Kilopower—Pioneering space fission power system could provide up to 10 kilowatts of electrical power

Related Stories

NASA Developing Fission Surface Power Technology

September 11, 2008

(PhysOrg.com) -- NASA astronauts will need power sources when they return to the moon and establish a lunar outpost. NASA engineers are exploring the possibility of nuclear fission to provide the necessary power and taking ...

The first nuclear power plant for settlements on Moon, Mars

August 28, 2011

(PhysOrg.com) -- The first nuclear power plant being considered for production of electricity for manned or unmanned bases on the Moon, Mars and other planets may really look like it came from outer space, according to a ...

NASA Reignites Program for Nuclear Thermal Rockets

August 14, 2017

In its pursuit of missions that will take us back to the moon, to Mars, and beyond, NASA has been exploring a number of next-generation propulsion concepts. Whereas existing concepts have their advantages – chemical rockets ...

Recommended for you

New space industry emerges: on-orbit servicing

November 17, 2018

Imagine an airport where thousands of planes, empty of fuel, are left abandoned on the tarmac. That is what has been happening for decades with satellites that circle the Earth.

SpaceX gets nod to put 12,000 satellites in orbit

November 16, 2018

SpaceX got the green light this week from US authorities to put a constellation of nearly 12,000 satellites into orbit in order to boost cheap, wireless internet access by the 2020s.

Electric blue thrusters propelling BepiColombo to Mercury

November 16, 2018

In mid-December, twin discs will begin glowing blue on the underside of a minibus-sized spacecraft in deep space. At that moment Europe and Japan's BepiColombo mission will have just come a crucial step closer to Mercury.

Overflowing crater lakes carved canyons across Mars

November 16, 2018

Today, most of the water on Mars is locked away in frozen ice caps. But billions of years ago it flowed freely across the surface, forming rushing rivers that emptied into craters, forming lakes and seas. New research led ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

dirk_bruere
not rated yet May 06, 2018
Wow! We are nearly back to having the same capability as we did in the 1960s. That's progress for you

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.