Annotation tool provides step toward understanding links between disease, mutant RNA

May 19, 2018, Oregon State University
This is a computer graphic of an RNA molecule. Credit: Richard Feldmann/Wikipedia

Researchers at Oregon State University have developed a computer program that represents a key step toward better understanding the connections between mutant genetic material and disease.

Known as bpRNA, the software is a big-data annotation tool for secondary structures in ribonucleic acids.

"It's capable of parsing RNA structures, including complex pseudoknot-containing RNAs, so you end up with an objective, precise, easily-interpretable description of all loops, stems and pseudoknots," said corresponding author David Hendrix. "You also get the positions, sequence and flanking base pairs of each structural feature, which enables us to study RNA en masse at a large scale."

RNA works with DNA, the other nucleic acid—so named because they were first discovered in the cell nuclei of living things—to produce the proteins needed throughout the body. DNA contains a person's hereditary information, and RNA delivers the information's coded instructions to the protein-manufacturing sites within the cells. Many RNA molecules do not encode a protein, and these are known as noncoding RNAs.

"There are plenty of examples of disease-associated mutations in noncoding RNAs that probably affect their structure, and in order to statistically analyze why those mutations are linked to disease we have to automate the analysis of RNA structure," said Hendrix, assistant professor of biochemistry and biophysics in the College of Science. "RNA is one of the fundamental, essential molecules for life, and we need to understand RNAs' structure to understand how they function."

Secondary structures are the base-pairing interactions within a single nucleic acid polymer or between two polymers. DNA has mainly fully base-paired double helices, but RNA is single stranded and can form complicated interactions.

Hendrix says bpRNA, presented this month in a paper in Nucleic Acids Research, features the largest and most detailed database to date of secondary RNA structures.

"To be fair it's a meta-database, but our special sauce is the tool to annotate everything," said Hendrix, who is also an assistant professor in the OSU College of Engineering. "Before there was no way of saying where all the structural features were in an automated way. We provide a color-coded map of where everything is. These annotations will enable us to identify statistical trends that may shed light on RNA structure formation and may open the door for machine learning algorithms to predict secondary RNA structure in ways that haven't been possible."

Researchers have successfully tested the tool on more than 100,000 structures, "many of which are very complex, with lots of complex pseudoknots."

"Every day new RNAs are discovered and researchers are making huge progress in understanding their function," Hendrix said. "We're starting to appreciate that the genome is full of noncoding RNAs in addition to messenger RNAs, and they're important biological molecules with big effects on human health and disease."

Explore further: RNA folding: A little cooperation goes a long way

More information: Padideh Danaee et al, bpRNA: large-scale automated annotation and analysis of RNA secondary structure, Nucleic Acids Research (2018). DOI: 10.1093/nar/gky285

Related Stories

RNA folding: A little cooperation goes a long way

November 21, 2012

(Phys.org)—The nucleic acid RNA is an essential part of the critical process by which the cells in our bodies manufacture proteins. But noncoding RNAs also exist whose sequences, while not converted into proteins, play ...

Study describes revolutionary method of making RNAs

May 4, 2015

A biochemist from The University of Texas Health Science Center at San Antonio is a co-author on a paper in Nature that describes a new, more efficient method of making ribonucleic acids (RNAs).

Discovering the structure of RNA

January 5, 2018

RNA, or ribonucleic acid, plays an essential role in many biological processes, not only as messenger molecule with the task of transmitting genetic information from the nucleus to the cytoplasm for protein production, but ...

Recommended for you

Collaboration yields discovery of 12-sided silica cages

June 20, 2018

What do you call a materials science discovery that was given a major boost by a lecture from a Nobel laureate in chemistry, used cryogenic electron microscopy (cryo-EM), and was pushed further along by a doctoral student's ...

On the path to an artificial cell

June 20, 2018

It is hoped that cells created in a test tube can answer some of the major questions in biology. What is the minimum that a cell needs in order to live? And how did life on Earth begin? Researchers from the Max Planck Institute ...

Novel genetic method improves efficiency of enzyme

June 20, 2018

Researchers at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) and the University of Georgia developed a new genetic engineering technique to dramatically improve an enzyme's ability to ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.