Theorists described an inertial lift of particles in microchannels

Theorists described an inertial lift of particles in microchannels
Migration of a particle to an equilibrium position in a microchannel. The locus of this position is determined by the balance between lift and gravity forces. Credit: Alexander Dubov

A group of scientists from MSU, Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences, and Juelich Research Center have described the mechanism of appearance of an inertial lift force acting on finite-sized particles in microchannels. Such calculations were previously possible only for some specific cases. A more accurate description allows one to use this inertial lift for particle sorting. The study was published in Journal of Fluid Mechanics.

The authors of the work studied the forces acting on the particles in microchannels. The behavior of the particles depends on the Reynolds number, which is the ratio of inertial to viscous forces within a liquid. At finite Reynolds number small particles migrate across the streamlines to some equilibrium positions in microchannels. This migration is attributed to the action of inertial lift forces.

Precise calculations of particle migrations in microchannels will help to use them for sorting healthy cells from cancerous ones. Since there are several forces simultaneously acting on the particles, their migrations are difficult to interpret theoretically. Previous studies addressed only some simple specific cases, such as the migration of point-like particles, whose size is ignored, or finite-size particles translating in the vicinity of a single wall.

"Inertial microfluidics is widely known and used, but so far only at high Reynolds numbers, conditions difficult to generate in microchannels since pumping the liquid requires a huge drop in pressure. Therefore modern devices for inertial particle separation employ quite wide channels," said Evgeny Asmolov, a co-author of the work, senior research associate of Institute of Mechanics, MSU, and leading research associate of IPCE.

The new study proposes a more general theory, which describes a hydrodynamic lift of finite-size particles in microchannels. Additionally, the authors succeeded in accounting the particle-wall interaction and analyzing the behavior of particles with different density. If the density of a particle differs from that of a liquid, the lift will be balanced by gravity and the buoyant force. These two additional forces may shift the equilibrium positions or even cause their disappearance.

The scientists validated the new theory by using computer simulations. According to their results, new formulae turn to obtained earlier in corresponding limiting cases. Moreover, the physicists analyzed several typical experimental settings to predict the behavior of particles.

"According to our predictions, even at low Reynolds numbers, can take off by rotating from the walls of a microchannel, like planes. They then fly at certain distances from the walls, which depend only on their density and radius, by forming chains. These chains of can be easily separated in lab-on-a-chip devices, and the fractionation in this case is more efficient than in wide channels and at high Reynolds numbers," said Olga Vinogradova, a co-author of the work, professor of the Faculty of Physics, MSU, and head of lab at IPCE.


Explore further

How to cut a vortex into slices

More information: Evgeny S. Asmolov et al, Inertial focusing of finite-size particles in microchannels, Journal of Fluid Mechanics (2018). DOI: 10.1017/jfm.2018.95
Journal information: Journal of Fluid Mechanics

Citation: Theorists described an inertial lift of particles in microchannels (2018, April 6) retrieved 26 May 2019 from https://phys.org/news/2018-04-theorists-inertial-particles-microchannels.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.
11 shares

Feedback to editors

User comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more