Swirling liquids work similarly to bitcoin

April 23, 2018, Stanford University
Credit: CC0 Public Domain

Fluid dynamics is not something that typically comes to mind when thinking about bitcoin. But for one Stanford physicist, the connection is as simple as stirring your coffee.

In a study published April 23 in Proceedings of the National Academy of Sciences, Stanford applied physics doctoral student William Gilpin described how swirling liquids, such as coffee, follow the same principles as transactions with cryptocurrencies such as bitcoin. This parallel between the mathematical functions governing cryptocurrencies and natural, physical processes may help in developing more advanced digital security and in understanding in nature.

"Having an actual physical model and showing that this is a naturally occurring process might open up new ways to think about those functions," Gilpin said.

Tangible transformations

Cryptocurrencies like bitcoin work in mysterious ways on purpose. As a virtual currency, it isn't protected or controlled by any central group. Instead, cryptocurrencies exchange and secure information through a mathematical function called a cryptographic hash—a modern workhorse for cybersecurity. These functions mathematically transform digital information into a unique output that disguises the input.

Hash functions are deliberately designed to be complex, but they also remain consistent so that the same input always produces the same output. However, two similar inputs will likely produce very different outputs. These functions make it easy for computers to track cryptocurrencies but hard for hackers to do the same.

As a physicist, Gilpin said he saw similarities between the way work and the physical laws involved with stirring a liquid. "I figured there's probably some analogy there that was worth looking into," he said. And, with a few weeks free during a winter break he decided to explore his idea.

Gilpin focused on a principle called chaotic mixing, which describes the action of mixing a fluid. Imagine stirring coffee creamer into a mug of black coffee and watching the creamer separate into a swirling pattern. If the creamer were stirred precisely the same way in the future, the same pattern would result. But even the smallest change in the location of the spoon or the speed of the stir results in a very different pattern. In other words, each initial stir produces a unique swirl signature.

Additionally, just looking at the resulting pattern of the creamer in the coffee doesn't reveal anything about the original action—where the spoon was, how fast it moved, or how many circles—similar to the way a hash function transforms information so that the input is impossible to identify.

Gilpin decided to put the chaotic-mixing-of-fluids example to the test as a hash function. He found that the equations involved in mixing a fluid fit the requirements for hash functions almost perfectly. "I wasn't expecting it to perform that well," he said. "When it looked like it satisfied every property of a hash function I started getting really excited. It suggests that there's something more fundamental going on with how chaotic math is acting."

Outside the box

Modern hash functions are an ongoing area of research, as cryptocurrencies and similar applications such as digital signatures are becoming increasingly common for credit card transactions and legal documents. Gilpin suspects the parallel between the fields of computer science and applied physics could help in creating even more secure ways of protecting .

This connection can also help validate precise procedures, such as those used in drug development, said Gilpin. Certain drug development methods require injecting various fluids at specific points in time, similar to the way a hash performs a precise order of equations. "If you don't form the correct arrangement when you're done, then you know that one of your processes didn't go right," he said. "The chaotic property ensures that you're not going to accidentally get a final product that looks correct."

The discovery also suggests that cryptographic, presumably human-devised computations are not unique to the digital realm. "Something as ordinary as a fluid is still performing computations," said Gilpin. "It's not something only humans tell computers to do. It's something that nature does and it shows up in the structure of how things form."

Gilpin isn't a computer scientist or drug developer himself. When he's not connecting the digital and physical fields, he studies the way fluids work in nature with Manu Prakash, an assistant professor of bioengineering. So for him, "the idea that we can start to use some of these ideas from computer science is pretty exciting."

Explore further: NIST requests public comment on proposed SHA-3 cryptographic standard

More information: Cryptographic hashing using chaotic hydrodynamics, Proceedings of the National Academy of Sciences (2018). www.pnas.org/cgi/doi/10.1073/pnas.1721852115

Related Stories

Central banker takes stab at bitcoin 'bubble'

February 6, 2018

The head of the Bank of International Settlements, the central bank for central banks, on Tuesday lambasted bitcoin as a speculative bubble and said authorities need to be ready to protect public trust in the financial system.

Recommended for you

Magic number colloidal clusters

December 14, 2018

Complexity in nature often results from self-assembly, and is considered particularly robust. Compact clusters of elemental particles can be shown to be of practical relevance, and are found in atomic nuclei, nanoparticles ...

Tangled magnetic fields power cosmic particle accelerators

December 13, 2018

Magnetic field lines tangled like spaghetti in a bowl might be behind the most powerful particle accelerators in the universe. That's the result of a new computational study by researchers from the Department of Energy's ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Whydening Gyre
not rated yet Apr 24, 2018
This is the essence of "quantum" action.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.