Searching for signs of ice on Mars using radar

April 16, 2018, European Space Agency
Credit: ESA/Mars Express/NASA/JPL/KU/Smithsonian

Searching for signs of ice on Mars is complex. To explore whether ice lurks beneath the surface of the Red Planet, ESA's Mars Express uses its radar to probe the interior.

It sends low-frequency radio pulses at Mars and records how they are returned to the spacecraft. These pulses can penetrate some of the material comprising the planet's crust, bouncing back to Mars Express when they reach a layer of a different density or composition. By analysing the time delays of these returned pulses, scientists can determine the properties of material lying beneath the .

This image shows radar echoes from Meridiani Planum, an area near Mars' equator that is also being explored by NASA's Opportunity rover.

In the image, reflected echoes from the surface and subsurface, separated in time delay, are plotted along the ground track of the spacecraft's orbit. The bright white line crossing the frame marks the surface of Mars, while the faint, more diffuse line just below represents echoes from the base of a layer of buried material located far below the surface.

The surface of Meridiani Planum is full of volcanic sands that are known to contain minerals that formed in the presence of water in the planet's distant past. Previously, it was unclear what kinds of materials lay beneath the surface here, but the Mars Express radar has now penetrated the deposits and revealed that they have a similar property to ice.

However, a recent study instead suggests an ice-free explanation, showing that these radar properties could just as easily be explained by a thick layer of porous sand – perhaps blown into the region by winds. Unlike other geologic , such as volcanic ash or very fine dust, a thick layer of sand-sized particles may produce properties in the akin to that of an ice-rich deposit.

The echoes are thought to be reflections from the boundary between Meridiani Planum deposits below the surface, and cratered terrain lying deeper still.

These results highlight the difficulty in finding buried ice, and will help scientists to identify areas with and without accessible water ice: a resource critical to the future human exploration and possible colonisation of Mars.

This radargram was obtained by the Mars Advanced Radar for Subsurface and Ionosphere Sounding instrument, MARSIS, in April 2016. The image covers a width of about 80 km. North is to the left (see annotated version in the published paper for more details).

Explore further: New study may help identify areas with and without accessible water ice on Mars

Related Stories

Mars: What lies beneath

August 13, 2013

There is much more to Mars than meets the eye. By using the radar on Mars Express, we can see several kilometres below the surface to see what lies beneath.

Geologists finding a different Mars underneath

December 13, 2006

Scientists are finding an older, craggier face of Mars buried beneath the surface, thanks to pioneering sounding radar co-sponsored by NASA aboard the European Space Agency's Mars Express spacecraft.

Mars Express Probes Red Planet's Unusual Deposits

November 1, 2007

The radar system on the European Space Agency's Mars Express orbiter has uncovered new details about some of the most mysterious deposits on Mars: the Medusae Fossae Formation. It has provided the first direct measurement ...

Recommended for you

Superflares from young red dwarf stars imperil planets

October 18, 2018

The word "HAZMAT" describes substances that pose a risk to the environment, or even to life itself. Imagine the term being applied to entire planets, where violent flares from the host star may make worlds uninhabitable by ...

Blazar's brightness cycle confirmed by NASA's Fermi mission

October 18, 2018

A two-year cycle in the gamma-ray brightness of a blazar, a galaxy powered by a supermassive black hole, has been confirmed by 10 years of observations from NASA's Fermi Gamma-ray Space Telescope. The findings were announced ...

Astronomers catch red dwarf star in a superflare outburst

October 18, 2018

New observations by two Arizona State University astronomers using the Hubble Space Telescope have caught a red dwarf star in a violent outburst, or superflare. The blast of radiation was more powerful than any such outburst ...

Magnetic fields may be the key to black hole activity

October 17, 2018

Collimated jets provide astronomers with some of the most powerful evidence that a supermassive black hole lurks in the heart of most galaxies. Some of these black holes appear to be active, gobbling up material from their ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.